METHODS: The POCT was used to test 170 serum specimens collected through measles surveillance or vaccination programmes in Ethiopia, Malaysia and the Russian Federation: 69 were positive for measles immunoglobulin M (IgM) antibodies, 74 were positive for rubella IgM antibodies and 7 were positive for both. Also tested were 282 oral fluid specimens from the measles, mumps and rubella (MMR) surveillance programme of the United Kingdom of Great Britain and Northern Ireland. The Microimmune measles IgM capture enzyme immunoassay was the gold standard for comparison. A panel of 24 oral fluids was used to investigate if measles virus haemagglutinin (H) and nucleocapsid (N) genes could be amplified by polymerase chain reaction directly from used POCT strips.
FINDINGS: With serum POCT showed a sensitivity and specificity of 90.8% (69/76) and 93.6% (88/94), respectively; with oral fluids, sensitivity and specificity were 90.0% (63/70) and 96.2% (200/208), respectively. Both H and N genes were reliably detected in POCT strips and the N genes could be sequenced for genotyping. Measles virus genes could be recovered from POCT strips after storage for 5 weeks at 20-25 °C.
CONCLUSION: The POCT has the sensitivity and specificity required of a field-based test for measles diagnosis. However, its role in global measles control programmes requires further evaluation.
RESULTS: Out of 504 animals, 115 were positive for Orf-virus antibodies. An overall prevalence rate of 22.8% indicated a high prevalence of orf disease in this region. It was observed that 25.1% (92/367) of goats were positive and 16.8% (23/137) of sheep sero-converted for Orf virus antibody. Several factors were measured for their possible association with prevalence of Orf virus infection. The prevalence was higher in LY farm, JC breed, kid and female animals, and in the presence of disease lesion. Chi-square analysis showed a significant association of three risk factors which are species, age and sex of the animals (P 0.05). Farms surveyed usually practised intensive management system, keeping animals in the shade at all time, due to limited availability of suitable land as a free-range grazing area. An interview with small holder farmers revealed a lack of awareness of the main goals of herd health programme. An overall compliance level of 42.7% was observed for all HHP parameters. Among the 14 main components of HHP modules, animal identification had recorded highest compliance level (84.62%) while milking management recorded the least compliance (- 82.69%). That explained why there was a high sporadic prevalence of Orf infection in this region.
CONCLUSION: Good herd health supervision is a rehearsal target to prevent an outbreak and the spread of diseases thus reduces economic losses among farmers. Therefore, a good herd health programme should be in place, in order to prevent and control disease transmission as well as to improve herd immunity.