Landfill leachate is one of the sources of surface water pollution in Selangor State (SS), Malaysia. Leachate volume prediction is essential for sustainable waste management and leachate treatment processes. The accurate estimation of leachate generation rates is often considered a challenge, especially in developing countries, due to the lack of reliable data and high measurement costs. Leachate generation is related to several variable factors, including meteorological data, waste generation rates, and landfill design conditions. Large variations in these factors lead to complicated leachate modeling processes. The aims of this study are to determine the key elements contributing to leachate production and then develop an adaptive neural fuzzy inference system (ANFIS) model to predict leachate generation rates. Accuracy of the final model performance was tested and evaluated using the root mean square error (RMSE), the mean absolute error (MAE), and the correlation coefficient (R). The study results defined dumped waste quantity, rainfall level, and emanated gases as the most significant contributing factors in leachate generation. The best model structure consisted of two triangular fuzzy membership functions and a hybrid training algorithm with eight fuzzy rules. The proposed ANFIS model showed a good performance with an overall correlation coefficient of 0.952.
This study investigates the relationship between metacognition and achievement goals which may influence mathematical modeling competency in students of mathematics education programs. The current study employs 538 students of mathematics education program; 483 (89.8%) of whom are male and 55 (10.2%) are aged from 18 years old to 22 years old. The study follows a correlational research design to investigate and measure the degree of relationship amongst mathematical modeling competencies, achievement goals and metacognition. Results indicate that achievement goals and metacognition positively influence mathematical modeling competency. Moreover, four metacognition dimensions including awareness, planning, cognitive strategy and self-checking are positive partial mediators because they increase the association between achievement goals and mathematical modeling competency. In conclusion, metacognition and achievement goals positively affect students' mathematical modeling competency.
The influences of climate on the retention capability of green roof have been widely discussed in existing literature. However, knowledge on how the retention capability of green roof is affected by the tropical climate is limited. This paper highlights the retention performance of the green roof situated in Kuching under hot-humid tropical climatic conditions. Using the green roof water balance modelling approach, this study simulated the hourly runoff generated from a virtual green roof from November 2012 to October 2013 based on past meteorological data. The result showed that the overall retention performance was satisfactory with a mean retention rate of 72.5% from 380 analysed rainfall events but reduced to 12.0% only for the events that potentially trigger the occurrence of flash flood. By performing the Spearman rank's correlation analysis, it was found that the rainfall depth and mean rainfall intensity, individually, had a strong negative correlation with event retention rate, suggesting that the retention rate increases with decreased rainfall depth. The expected direct relationship between retention rate and antecedent dry weather period was found to be event size dependent.
Pharmaceutical pollutants substantially affect the environment; thus, their treatments have been the focus of many studies. In this article, the fixed-bed adsorption of pharmaceuticals on various adsorbents was reviewed. The experimental breakthrough curves of these pollutants under various flow rates, inlet concentrations, and bed heights were examined. Fixed-bed data in terms of saturation uptakes, breakthrough time, and the length of the mass transfer zone were included. The three most popular breakthrough models, namely, Adams-Bohart, Thomas, and Yoon-Nelson, were also reviewed for the correlation of breakthrough curve data along with the evaluation of model parameters. Compared with the Adams-Bohart model, the Thomas and Yoon-Nelson more effectively predicted the breakthrough data for the studied pollutants.
Autonomous agents are being widely used in many systems, such as ambient assisted-living systems, to perform tasks on behalf of humans. However, these systems usually operate in complex environments that entail uncertain, highly dynamic, or irregular workload. In such environments, autonomous agents tend to make decisions that lead to undesirable outcomes. In this paper, we propose a fuzzy-logic-based adjustable autonomy (FLAA) model to manage the autonomy of multi-agent systems that are operating in complex environments. This model aims to facilitate the autonomy management of agents and help them make competent autonomous decisions. The FLAA model employs fuzzy logic to quantitatively measure and distribute autonomy among several agents based on their performance. We implement and test this model in the Automated Elderly Movements Monitoring (AEMM-Care) system, which uses agents to monitor the daily movement activities of elderly users and perform fall detection and prevention tasks in a complex environment. The test results show that the FLAA model improves the accuracy and performance of these agents in detecting and preventing falls.
The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.
This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.
The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R2) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
Regression testing is crucial in ensuring that modifications made did not introduce any adverse effect on the software being modified. However, regression testing suffers from execution cost and time consumption problems. Test case prioritization (TCP) is one of the techniques used to overcome these issues by re-ordering test cases based on their priorities. Model-based TCP (MB-TCP) is an approach in TCP where the software models are manipulated to perform prioritization. The issue with MB-TCP is that most of the existing approaches do not provide satisfactory faults detection capability. Besides, their granularity of test selection criteria is not very good and this can affect prioritization effectiveness. This study proposes an MB-TCP approach that can improve the faults detection performance of regression testing. It combines the implementation of two existing approaches from the literature while incorporating an additional ordering criterion to boost prioritization efficacy. A detailed empirical study is conducted with the aim to evaluate and compare the performance of the proposed approach with the selected existing approaches from the literature using the average of the percentage of faults detected (APFD) metric. Three web applications were used as the objects of study to obtain the required test suites that contained the tests to be prioritized. From the result obtained, the proposed approach yields the highest APFD values over other existing approaches which are 91%, 86% and 91% respectively for the three web applications. These higher APFD values signify that the proposed approach is very effective in revealing faults early during testing. They also show that the proposed approach can improve the faults detection performance of regression testing.
The concept of forecasting asthma using humans as animal sentinels is uncommon. This study explores the plausibility of predicting future asthma daily admissions using retrospective data in London (2005-2006). Negative binomial regressions were used in modeling; allowing the non-contiguous autoregressive components. Selected lags were based on partial autocorrelation function (PACF) plot with a maximum lag of 7 days. The model was contrasted with naïve historical and seasonal models. All models were cross validated. Mean daily asthma admission in 2005 was 27.9 and in 2006 it was 28.9. The lags 1, 2, 3, 6 and 7 were independently associated with daily asthma admissions based on their PACF plots. The lag model prediction of peak admissions were often slightly out of synchronization with the actual data, but the days of greater admissions were better matched than the days of lower admissions. A further investigation across various populations is necessary.
Kinesin is a protein-based natural nanomotor that transports molecular cargoes within cells by walking along microtubules. Kinesin nanomotor is considered as a bio-nanoagent which is able to sense the cell through its sensors (i.e. its heads and tail), make the decision internally and perform actions on the cell through its actuator (i.e. its motor domain). The study maps the agent-based architectural model of internal decision-making process of kinesin nanomotor to a machine language using an automata algorithm. The applied automata algorithm receives the internal agent-based architectural model of kinesin nanomotor as a deterministic finite automaton (DFA) model and generates a regular machine language. The generated regular machine language was acceptable by the architectural DFA model of the nanomotor and also in good agreement with its natural behaviour. The internal agent-based architectural model of kinesin nanomotor indicates the degree of autonomy and intelligence of the nanomotor interactions with its cell. Thus, our developed regular machine language can model the degree of autonomy and intelligence of kinesin nanomotor interactions with its cell as a language. Modelling of internal architectures of autonomous and intelligent bio-nanosystems as machine languages can lay the foundation towards the concept of bio-nanoswarms and next phases of the bio-nanorobotic systems development.
We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.
Pyrodinium bahamense (var. compressum) has been the only dinoflagellate species that has caused major public health and economic problems in the Southeast Asian region for more than 2 decades now. It produces saxitoxin, a suite of toxins that cause Paralytic Shellfish Poisoning (PSP). A serious toxicological problem affecting many countries of the world, mild cases of this poisoning can occur within 30 minutes while in extreme cases, death through respiratory paralysis may occur within 2-24 hrs of ingestion of intoxicated shellfish. Blooms of the organism have been reported in Malaysia, Brunei Darussalam, the Philippines and Indonesia. The ASEAN-Canada Red Tide Network has recorded 31 blooms of the organism in 26 areas since 1976 when it first occurred in Sabah, Malaysia. As of 1999, the most hard hit country has been the Philippines which has the greatest number of areas affected (18) and highest number of Paralytic Shellfish Poisoning (PSP) cases (about 1995). Malaysia has reported a total of 609 PSP cases and 44 deaths while Brunei has recorded 14 PSP cases and no fatalities. Indonesia, on the other hand has a record of 427 PSP cases and 17 deaths. Studies on ecological/environmental impacts of these blooms have not been done in the region. Estimates of economic impacts have shown that the loss could be up to USD 300,000 day-1. Most of the data and information useful for understanding Pyrodinium bloom dynamics have come from harmful/toxic algal monitoring and research that have developed to different degrees in the various countries in the region affected by the organism's bloom. Regional collaborative research and monitoring efforts can help harmonize local data sets and ensure their quality and availability for comparative analysis and modeling. Temporal patterns of the blooms at local and regional scales and possible signals and trends in the occurrence/recurrence and spread of Pyrodinium blooms could be investigated. Existing descriptive and simple predictive models of Pyrodinium blooms can be improved and refined to help in the management of the wild harvest and aquaculture of shellfish in a region where the people are dependent on these resources for their daily food sustainance and livelihood.
The stability of clusters is a serious issue in mobile ad hoc networks. Low stability of clusters may lead to rapid failure of clusters, high energy consumption for reclustering, and decrease in the overall network stability in mobile ad hoc network. In order to improve the stability of clusters, weight-based clustering algorithms are utilized. However, these algorithms only use limited features of the nodes. Thus, they decrease the weight accuracy in determining node's competency and lead to incorrect selection of cluster heads. A new weight-based algorithm presented in this paper not only determines node's weight using its own features, but also considers the direct effect of feature of adjacent nodes. It determines the weight of virtual links between nodes and the effect of the weights on determining node's final weight. By using this strategy, the highest weight is assigned to the best choices for being the cluster heads and the accuracy of nodes selection increases. The performance of new algorithm is analyzed by using computer simulation. The results show that produced clusters have longer lifetime and higher stability. Mathematical simulation shows that this algorithm has high availability in case of failure.
This study investigates the effects of an arbitrary wall shear stress on unsteady magnetohydrodynamic (MHD) flow of a Newtonian fluid with conjugate effects of heat and mass transfer. The fluid is considered in a porous medium over a vertical plate with ramped temperature. The influence of thermal radiation in the energy equations is also considered. The coupled partial differential equations governing the flow are solved by using the Laplace transform technique. Exact solutions for velocity and temperature in case of both ramped and constant wall temperature as well as for concentration are obtained. It is found that velocity solutions are more general and can produce a huge number of exact solutions correlative to various fluid motions. Graphical results are provided for various embedded flow parameters and discussed in details.
Web services today are among the most widely used groups for Service Oriented Architecture (SOA). Service selection is one of the most significant current discussions in SOA, which evaluates discovered services and chooses the best candidate from them. Although a majority of service selection techniques apply Quality of Service (QoS), the behaviour of QoS-based service selection leads to service selection problems in Multi-Criteria Decision Making (MCDM). In the existing works, the confidence level of decision makers is neglected and does not consider their expertise in assessing Web services. In this paper, we employ the VIKOR (VIšekriterijumskoKOmpromisnoRangiranje) method, which is absent in the literature for service selection, but is well-known in other research. We propose a QoS-based approach that deals with service selection by applying VIKOR with improvement of features. This research determines the weights of criteria based on user preference and accounts for the confidence level of decision makers. The proposed approach is illustrated by an example in order to demonstrate and validate the model. The results of this research may facilitate service consumers to attain a more efficient decision when selecting the appropriate service.
In 2010, Klang Valley has only 17% trips each day were completed using public transport, with the rest of the 83% trips were made through private transport. The inclination towards private car usage will only get worse if the transport policy continues to be inefficient and ineffective. Under the National Key Economic Area, the priority aimed to stimulate the increase of modal share of public transport in the Klang Valley to 50% by 2020. In the 10th Malaysia Plan, the Klang Valley Mass Rapid Transit was proposed, equipped with 141 km of MRT system, and will integrate with the existing rail networks. Nevertheless, adding kilometers into the rail system will not help, if people do not make the shift from private into public transport. This research would like to assess the possible mode shift of travellers in the Klang Valley towards using public transport, based on the utility function of available transport modes. It intends to identify the criteria that will trigger their willingness to make changes in favour of public transport as targeted by the NKEA.
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
A new approach to suppressing the four-wave mixing (FWM) crosstalk by using the pairing combinations of differently linear-polarized optical signals was investigated. The simulation was conducted using a four-channel system, and the total data rate was 40 Gb/s. A comparative study on the suppression of FWM for existing and suggested techniques was conducted by varying the input power from 2 dBm to 14 dBm. The robustness of the proposed technique was examined with two types of optical fiber, namely, single-mode fiber (SMF) and dispersion-shifted fiber (DSF). The FWM power drastically reduced to less than -68 and -25 dBm at an input power of 14 dBm, when the polarization technique was conducted for SMF and DSF, respectively. With the conventional method, the FWM powers were, respectively, -56 and -20 dBm. The system performance greatly improved with the proposed polarization approach, where the bit error rates (BERs) at the first channel were 2.57 × 10(-40) and 3.47 × 10(-29) at received powers of -4.90 and -13.84 dBm for SMF and DSF, respectively.