Displaying publications 341 - 360 of 495 in total

Abstract:
Sort:
  1. Ali A, Kumar R, Khan A, Khan AU
    Int J Biol Macromol, 2020 Oct 01;160:212-223.
    PMID: 32464197 DOI: 10.1016/j.ijbiomac.2020.05.172
    Carbapenem resistance in Gram-negative pathogens has become a global concern for health workers worldwide. In one of our earlier studies, a Klebsiella pneumoniae-carbapenemase-2 producing strain was induced with meropenem to explore differentially expressed proteins under induced and uninduced conditions. There is, LysM domain BON family protein, was found over 12-fold expressed under the induced state. A hypothesis was proposed that LysM domain protein might have an affinity towards carbapenem antibiotics making them unavailable to bind with their target. Hence, we initiated a study to understand the binding mode of carbapenem with LysM domain protein. MICs of imipenem and meropenem against LysM clone were increased by several folds as compared to NP-6 clinical strain as well as DH5 α (PET-28a KPC-2) clone. This study further revealed a strong binding of both antibiotics to LysM domain protein. Molecular simulation studies of LysM domain protein with meropenem and imipenem for 80 ns has also showed stable structure. We concluded that overexpressed LysM domain under induced condition interacted with carbapenems, leading to enhanced resistance as proved by high MIC values. Hence, the study proved the proposed hypothesis that the LysM domain plays a significant role in the putative mechanism of antibiotics resistance.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  2. Halim MA, Choo QC, Ghazali AHA, Wajidi MFF, Najimudin N
    Lett Appl Microbiol, 2021 May;72(5):610-618.
    PMID: 33525052 DOI: 10.1111/lam.13455
    Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.
    Matched MeSH terms: Bacterial Proteins/genetics
  3. Asi AM, Rahman NA, Merican AF
    J Mol Graph Model, 2004 Mar;22(4):249-62.
    PMID: 15177077
    Protein-ligand binding free energy values of wild-type and mutant C-terminal domain of Escherichia coli arginine repressor (ArgRc) protein systems bound to L-arginine or L-citrulline molecules were calculated using the linear interaction energy (LIE) method by molecular dynamics (MD) simulation. The binding behaviour predicted by the dissociation constant (K(d)) calculations from the binding free energy values showed preferences for binding of L-arginine to the wild-type ArgRc but not to the mutant ArgRc(D128N). On the other hand, L-citrulline do not favour binding to wild-type ArgRc but prefer binding to mutant ArgRc(D128N). The dissociation constant for the wild-type ArgRc-L-arginine complex obtained in this study is in agreement with reported experimental results. Our results also support the experimental data for the binding of L-citrulline to the mutant ArgRc(D128N). These showed that LIE method for protein-ligand binding free energy calculation could be applied to the wild-type and the mutant E. coli ArgRc-L-arginine and ArgRc-L-citrulline protein-ligand complexes and possibly to other transcriptional repressor-co-repressor systems as well.
    Matched MeSH terms: Bacterial Proteins*
  4. Zaidan UH, Abdul Rahman MB, Othman SS, Basri M, Abdulmalek E, Rahman RN, et al.
    Biosci Biotechnol Biochem, 2011;75(8):1446-50.
    PMID: 21821960
    The utilization of natural mica as a biocatalyst support in kinetic investigations is first described in this study. The formation of lactose caprate from lactose sugar and capric acid, using free lipase (free-CRL) and lipase immobilized on nanoporous mica (NER-CRL) as a biocatalyst, was evaluated through a kinetic study. The apparent kinetic parameters, K(m) and V(max), were determined by means of the Michaelis-Menten kinetic model. The Ping-Pong Bi-Bi mechanism with single substrate inhibition was adopted as it best explains the experimental findings. The kinetic results show lower K(m) values with NER-CRL than with free-CRL, indicating the higher affinity of NER-CRL towards both substrates at the maximum reaction velocity (V(max,app)>V(max)). The kinetic parameters deduced from this model were used to simulate reaction rate data which were in close agreement with the experimental values.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  5. Alfizah H, Rukman AH, Norazah A, Hamizah R, Ramelah M
    World J Gastroenterol, 2013 Feb 28;19(8):1283-91.
    PMID: 23483193 DOI: 10.3748/wjg.v19.i8.1283
    To characterise the cag pathogenicity island in Helicobacter pylori (H. pylori) isolates by analysing the strains' vacA alleles and metronidazole susceptibilities in light of patient ethnicity and clinical outcome.
    Matched MeSH terms: Bacterial Proteins/genetics*
  6. Roslan AM, Mustafa Kamil A, Chandran C, Song AA, Yusoff K, Abdul Rahim R
    Biotechnol Lett, 2020 Sep;42(9):1727-1733.
    PMID: 32335791 DOI: 10.1007/s10529-020-02894-1
    OBJECTIVE: The effect of two signal peptides, namely Usp45 and Spk1 on the secretion of xylanase in Lactococcus lactis was analysed.

    RESULTS: Xylanase was successfully expressed in Lactococcus lactis. Recombinant xylanase fused to either signal peptide Usp45 or Spk1 showed halo zone on Remazol Brilliant Blue-Xylan plates. This indicated that the xylanase was successfully secreted from the cell. The culture supernatants of strains secreting the xylanase with help of the Spk1 and Usp45 signal peptides contained 49.7 U/ml and 34.4 U/ml of xylanase activity, respectively.

    CONCLUSION: Although Usp45 is the most commonly used signal peptide when secreting heterologous proteins in Lactococcus lactis, this study shows that Spk1 isolated from Pediococcus pentosaceus was superior to Usp45 in regard to xylanase protein secretion.

    Matched MeSH terms: Bacterial Proteins/genetics*
  7. Lachumanan R, Devi S, Cheong YM, Rodda SJ, Pang T
    Infect Immun, 1993 Oct;61(10):4527-31.
    PMID: 7691753
    Binding studies of 160 overlapping, synthetic octapeptides from the hydrophilic regions of the Sta58 major outer membrane protein of Rickettsia tsutsugamushi with sera from patients with scrub typhus revealed 15 immunodominant peptides which are recognized by all the sera tested. Further analysis of the specificity of peptide binding with five of these peptides indicated that the peptides showed significantly stronger binding to scrub typhus patients' sera than they did to sera from patients with other febrile illnesses common in the region, i.e., malaria, dengue fever, typhoid fever, and leptospirosis. The main antibody class binding to these peptides appears to be immunoglobulin M, and there appears to be little correlation between reactivity with peptides and antibody titers measured by the indirect immunoperoxidase test.
    Matched MeSH terms: Bacterial Proteins/immunology*
  8. Tang SW, Abubakar S, Devi S, Puthucheary S, Pang T
    Infect Immun, 1997 Jul;65(7):2983-6.
    PMID: 9199477
    The heat shock protein (HSP) response of Salmonella typhi following exposure to elevated growth temperatures was studied. Three major proteins with molecular sizes of 58, 68, and 88 kDa were abundantly expressed when S. typhi cells were shifted from 37 to 45 degrees C and to 55 degrees C. These proteins were also constitutively expressed at 37 degrees C. Western blotting and immunoprecipitation studies with anti-HSP monoclonal antibodies revealed that the 58- and 68-kDa proteins were analogous to the GroEL and DnaK proteins, respectively, of Escherichia coli. These HSPs are also abundantly present in the outer membrane fraction of disrupted cells and, to a lesser extent, in the cytosol. Immunoblotting experiments with sera from patients with a culture-positive diagnosis of typhoid fever showed the presence of antibodies to these HSPs. Nine of twelve sera reacted with the 58-, 68-, and 88-kDa proteins, while three sera reacted only with the 68- and 88-kDa proteins. All 10 sera from healthy individuals showed no binding to these HSPs. In light of the well-documented roles of HSPs in the pathogenesis of microbial infections and as immunodominant antigens, these findings may be relevant for a better understanding of disease processes and for the future development of diagnostic and preventive strategies.
    Matched MeSH terms: Bacterial Proteins/immunology
  9. Sayyed AH, Wright DJ
    Pest Manag Sci, 2001 May;57(5):413-21.
    PMID: 11374157
    A field population of Plutella xylostella from Malaysia (SERD4) was divided into five sub-populations and four were selected (G2-G5) with the Bacillus thuringiensis insecticidal crystal (Cry) toxins Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da. Bioassay at G6 gave resistance ratios of 88, 5, 2 and 3 for Cry1Ac, Cry1Ab, Cry1Ca and Cry1Da respectively compared with the unselected sub-population (UNSEL-SERD4). The Cry1Ac-selected population showed little cross-resistance to Cry1Ab, Cry1Ca and Cry1Da, (3-, 2- and 3-fold compared with UNSEL-SERD4), whereas the Cry1Ab-SEL sub-population showed marked cross-resistance to Cry1Ac (40-fold), much greater than Cry1Ab itself. In contrast, the Cry1Ca- and Cry1Da-SEL sub-population showed little if any cross-resistance to Cry1Ac and Cry1Ab. The mode of inheritance of resistance to Cry1Ac was examined in Cry1Ac-selected SERD4 by standard reciprocal crosses and back-crosses using a laboratory insecticide-susceptible population (ROTH). Logit regression analysis of F1 reciprocal crosses indicated that resistance to Cry1Ac was inherited as an incompletely dominant trait. At the highest dose of Cry1Ac tested, resistance was recessive, while at the lowest dose it was almost completely dominant. The F2 progeny from a back-cross of F1 progeny with ROTH were tested with a concentration of Cry1Ac that would kill 100% of ROTH. The mortality ranged between 50 and 95% in seven families of back-cross progeny, which indicated that more than one allele on separate loci were responsible for resistance to Cry1Ac.
    Matched MeSH terms: Bacterial Proteins/toxicity*
  10. Pathmanathan SG, Cardona-Castro N, Sánchez-Jiménez MM, Correa-Ochoa MM, Puthucheary SD, Thong KL
    J Med Microbiol, 2003 Sep;52(Pt 9):773-6.
    PMID: 12909653
    The suitability of a PCR procedure using a pair of primers targeting the hilA gene was evaluated as a means of detecting Salmonella species. A total of 33 Salmonella strains from 27 serovars and 15 non-Salmonella strains from eight different genera were included. PCR with all the Salmonella strains produced a 784 bp DNA fragment that was absent from all the non-Salmonella strains tested. The detection limit of the PCR was 100 pg with genomic DNA and 3 x 10(4) c.f.u. ml(-1) with serial dilutions of bacterial culture. An enrichment-PCR method was further developed to test the sensitivity of the hilA primers for the detection of Salmonella in faecal samples spiked with different concentrations of Salmonella choleraesuis subsp. choleraesuis serovar Typhimurium. The method described allowed the detection of Salmonella Typhimurium in faecal samples at a concentration of 3 x 10(2) c.f.u. ml(-1). In conclusion, the hilA primers are specific for Salmonella species and the PCR method presented may be suitable for the detection of Salmonella in faeces.
    Matched MeSH terms: Bacterial Proteins/genetics
  11. Liew PS, Teh CS, Lau YL, Thong KL
    Trop Biomed, 2014 Dec;31(4):709-20.
    PMID: 25776596 MyJurnal
    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.
    Matched MeSH terms: Bacterial Proteins/genetics
  12. Getachew YM, Hassan L, Zakaria Z, Saleha AA, Kamaruddin MI, Che Zalina MZ
    Trop Biomed, 2009 Dec;26(3):280-8.
    PMID: 20237442 MyJurnal
    Vancomycin-resistant Enterococcus (VRE) is an emerging nosocomial pathogen in humans. The use of antibiotics in human therapy and in the production of food animals has been incriminated in the emergence of this organism. The present study describes the distribution of VRE species, the vancomycin-resistant genes detected, the vancomycin resistance pattern observed, and the genetic diversity of the isolates found in live broiler chickens in Malaysia. Overall 140 VRE were isolated with species comprising Enterococcus faecalis (48%), Enterococcus faecium (25.7%), Enterococcus gallinarum (12.1%), Enterococcus casseliflavus (1.4%) and other Enterococcus species (12.8%). Vancomycin resistance gene vanA and intrinsic genes vanC1 and vanC2/3 were detected in the study population. VanA was detected in 15 (63.9%) of E. faecium, 23 (22.4%) of E. faecalis and in 3 (17.6%) E. gallinarum isolates. E-test was conducted on randomly selected 41 of the isolates and the minimum inhibition concentration (MIC) of vancomycin for five (11.9%) of tested isolates is more than 256 μg/ml. Genotypic analysis using random amplified polymorphic DNA (RAPD) showed genetic diversity within the Enterococcus species.
    Matched MeSH terms: Bacterial Proteins/genetics
  13. Tan XE, Neoh HM, Looi ML, Chin SF, Cui L, Hiramatsu K, et al.
    Can J Microbiol, 2017 Mar;63(3):260-264.
    PMID: 28059579 DOI: 10.1139/cjm-2016-0439
    Comparative proteomic profiling between 2 vancomycin-intermediate Staphylococcus aureus (VISA) strains, Mu50Ω-vraSm and Mu50Ω-vraSm-graRm, and vancomycin-susceptible S. aureus (VSSA) strain Mu50Ω revealed upregulated levels of catabolic ornithine carbamoyltransferase (ArcB) of the arginine catabolism pathway in VISA strains. Subsequent analyses showed that the VISA strains have higher levels of cellular ATP and ammonia, which are by-products of arginine catabolism, and displayed thicker cell walls. We postulate that elevated cytoplasmic ammonia and ATP molecules, resulting from activated arginine catabolism upon acquisition of vraS and graR mutations, are important requirements facilitating cell wall biosynthesis, thereby contributing to thickened cell wall and consequently reduced vancomycin susceptibility in VISA strains.
    Matched MeSH terms: Bacterial Proteins/genetics
  14. Kher HL, Krishnan T, Letchumanan V, Hong KW, How KY, Lee LH, et al.
    Gene, 2019 Feb 05;684:58-69.
    PMID: 30321658 DOI: 10.1016/j.gene.2018.10.031
    In the phylum of Proteobacteria, quorum sensing (QS) system is widely driven by synthesis and response of N-acyl homoserine lactone (AHL) signalling molecules. AHL is synthesized by LuxI homologue and sensed by LuxR homologue. Once the AHL concentration achieves a threshold level, it triggers the regulation of target genes. In this study, QS activity of Citrobacter amalonaticus strain YG6 which was isolated from clams was investigated. In order to characterise luxI/R homologues, the genome of C. amalonaticus strain YG6 (4.95 Mbp in size) was sequenced using Illumina MiSeq sequencer. Through in silico analysis, a pair of canonical luxI/R homologues and an orphan luxR homologue were identified and designated as camI, camR, and camR2, respectively. A putative lux box was identified at the upstream of camI. The camI gene was cloned and overexpressed in E. coli BL21 (DE3)pLysS. High-resolution triple quadrupole liquid chromatography mass spectrometry (LC-MS/MS) analysis verified that the CamI is a functional AHL synthase which produced multiple AHL species, namely N‑butyryl‑l‑homoserine lactone (C4-HSL), N‑hexanoyl‑l‑homoserine lactone (C6-HSL), N‑octanoyl‑l‑homoserine lactone (C8-HSL), N‑tetradecanoyl‑l‑homoserine lactone (C14-HSL) and N‑hexadecanoyl‑l‑homoserine lactone (C16-HSL) in C. amalonaticus strain YG6 and camI gene in recombinant E. coli BL21(DE3)pLysS. To our best knowledge, this is the first functional study report of camI as well as the first report describing the production of C14-HSL by C. amalonaticus.
    Matched MeSH terms: Bacterial Proteins/genetics
  15. Puah SM, Tan JAMA, Chew CH, Chua KH
    J Food Sci, 2018 Sep;83(9):2337-2342.
    PMID: 30101982 DOI: 10.1111/1750-3841.14300
    Staphylococcus aureus is able to form multilayer biofilms embedded within a glycocalyx or slime layer. Biofilm formation poses food contamination risks and can subsequently increase the risk of food poisoning. Identification of food-related S. aureus strains will provide additional data on staphylococcal food poisoning involved in biofilm formation. A total of 52 S. aureus strains isolated from sushi and sashimi was investigated to study their ability for biofilm formation using crystal violet staining. The presence of accessory gene regulator (agr) groups and 15 adhesion genes was screened and their associations in biofilm formation were studied. All 52 S. aureus strains showed biofilm production on the tested hydrophobic surface with 44% (23/52) strains classified as strong, 33% (17/52) as moderate, and 23% (12/52) as weak biofilm producers. The frequency of agr-positive strains was 71% (agr group 1 = 21 strains; agr group 2 = 2 strains; agr group 3 = 12 strains; agr group 4 = 2 strains) whereas agr-negative strains were 29% (15/52). Twelve adhesion genes were detected and 98% of the S. aureus strains carried at least one adhesion gene. The ebps was significantly (p < .05) associated with strong biofilm producing strains. In addition, eno, clfA, icaAD, sasG, fnbB, cna, and sasC were significantly higher in the agr-positive group compared to the agr-negative group. The results of this study suggest that the presence of ebps, eno, clfA, icaAD, sasG, fnbB, cna, and sasC may play an important role in enhancing the stage of biofilm-related infections and warrants further investigation.

    PRACTICAL APPLICATION: This work contributes to the knowledge on the biofilm formation and the distribution of agr groups in S. aureus strains as well as microbial surface components in recognizing adherence matrix molecules of organisms isolated from ready-to-eat sushi and sashimi. The findings provide valuable information to further study the roles of specific genes in causing biofilm-related infections.

    Matched MeSH terms: Bacterial Proteins/genetics*
  16. Ko WC, Stone GG
    Ann Clin Microbiol Antimicrob, 2020 Apr 01;19(1):14.
    PMID: 32238155 DOI: 10.1186/s12941-020-00355-1
    BACKGROUND: Antimicrobial resistance among nosocomial Gram-negative pathogens is a cause for concern in the Asia-Pacific region. The aims of this study were to measure the rates of resistance among clinical isolates collected in Asia-Pacific countries, and to determine the in vitro antimicrobial activities of ceftazidime-avibactam and comparators against these isolates.

    METHODS: CLSI broth microdilution methodology was used to determine antimicrobial activity and EUCAST breakpoints version 9.0 were used to determine rates of susceptibility and resistance. Isolates were also screened for the genes encoding extended-spectrum β-lactamases (ESBLs) or carbapenemases (including metallo-β-lactamases [MBLs]).

    RESULTS: Between 2015 and 2017, this study collected a total of 7051 Enterobacterales isolates and 2032 Pseudomonas aeruginosa isolates from hospitalized patients in Australia, Japan, South Korea, Malaysia, the Philippines, Taiwan, and Thailand. In the Asia-Pacific region, Enterobacterales isolates that were ESBL-positive, carbapenemase-negative (17.9%) were more frequently identified than isolates that were carbapenemase-positive, MBL-negative (0.7%) or carbapenemase-positive, MBL-positive (1.7%). Multidrug-resistant (MDR) isolates of P. aeruginosa were more commonly identified (23.4%) than isolates that were ESBL-positive, carbapenemase-negative (0.4%), or carbapenemase-positive, MBL-negative (0.3%), or carbapenemase-positive, MBL-positive (3.7%). More than 90% of all Enterobacterales isolates, including the ESBL-positive, carbapenemase-negative subset and the carbapenemase-positive, MBL-negative subset, were susceptible to amikacin and ceftazidime-avibactam. Among the carbapenemase-positive, MBL-positive subset of Enterobacterales, susceptibility to the majority of agents was reduced, with the exception of colistin (93.4%). Tigecycline was active against all resistant subsets of the Enterobacterales (MIC90, 1-4 mg/L) and among Escherichia coli isolates, > 90% from each resistant subset were susceptible to tigecycline. More than 99% of all P. aeruginosa isolates, including MDR isolates and the carbapenemase-positive, MBL-positive subset, were susceptible to colistin.

    CONCLUSIONS: In this study, amikacin, ceftazidime-avibactam, colistin and tigecycline appear to be potential treatment options for infections caused by Gram-negative pathogens in the Asia-Pacific region.

    Matched MeSH terms: Bacterial Proteins/genetics
  17. Kong ZX, Karunakaran R, Abdul Jabar K, Ponnampalavanar S, Chong CW, Teh CSJ
    Microb Drug Resist, 2021 Oct;27(10):1319-1327.
    PMID: 33877888 DOI: 10.1089/mdr.2020.0096
    Background: Hypermucoviscous carbapenem-resistant Klebsiella pneumoniae (hmCRKp) is emerging globally and approaching the worst-case scenario in health care system. Aims: The main objective in this study was to determine the hypermucoviscous characteristics among the carbapenem-resistant K. pneumoniae (CRKp) isolated from a teaching hospital in Malaysia. The association of hypermucoviscous phenotype with the virulence traits and clinical presentations were also investigated. Methods: A retrospective study was conducted in University Malaya Medical Centre (UMMC). The presence of hypermucoviscous K. pneumoniae was identified among a collection of CRKp clinical isolates (first isolate per patient) from 2014 to 2015 using string test. Correlation between clinical and microbial characteristics of the hmCRKp was investigated. Results: A total of nine (7.5%) hmCRKp were detected among 120 CRKp isolates. Majority of the isolates were hospital acquired or health care-associated infections. None of the patients had typical pyogenic liver abscess. All of the hmCRKp isolates harbored carbapenemase genes and were multidrug resistant. K1/K serotype, peg-344, allS, and magA were not identified among hmCRKp isolates, whereas aerobactin siderophore receptor gene (iutA), iroB, rmpA, and rmpA2 were detected. Only three hmCRKp isolates were resistant to serum bactericidal. Conclusions: All the isolates presented inconclusive evidence for the interpretation of hypervirulence. Therefore, more study should be performed in the future to have a better understanding of the virulence mechanisms in correlation with the clinical and microbial determinants.
    Matched MeSH terms: Bacterial Proteins/genetics
  18. Moo CL, Osman MA, Yang SK, Yap WS, Ismail S, Lim SH, et al.
    Sci Rep, 2021 10 21;11(1):20824.
    PMID: 34675255 DOI: 10.1038/s41598-021-00249-y
    Antimicrobial resistance remains one of the most challenging issues that threatens the health of people around the world. Plant-derived natural compounds have received considerable attention for their potential role to mitigate antibiotic resistance. This study was carried out to assess the antimicrobial activity and mode of action of a monoterpene, 1,8-cineol (CN) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Results showed that resazurin microplate assay and time-kill analysis revealed bactericidal effects of CN at 28.83 mg/mL. Zeta potential showed that CN increased the surface charge of bacteria and an increase of outer membrane permeability was also detected. CN was able to cause leakage of proteins and nucleic acids in KPC-KP cells upon exposure to CN and ethidium bromide influx/efflux experiment showed the uptake of ethidium bromide into the cell; this was attributed to membrane damage. CN was also found to induce oxidative stress in CN-treated KPC-KP cells through generation of reactive oxygen species which initiated lipid peroxidation and thus damaging the bacterial cell membrane. Scanning and transmission electron microscopies further confirmed the disruption of bacterial cell membrane and loss of intracellular materials. In this study, we demonstrated that CN induced oxidative stress and membrane damage resulting in KPC-KP cell death.
    Matched MeSH terms: Bacterial Proteins/metabolism*
  19. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
    Matched MeSH terms: Bacterial Proteins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links