Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Abdullah I, AlMojil K, Shehab M
    Diseases, 2022 Nov 09;10(4).
    PMID: 36412596 DOI: 10.3390/diseases10040102
    Inflammatory bowel disease (IBD) is a chronic autoimmune disease with relapse-remission courses. A number of patients may present with a refractory disease with partial or no response to treatment. Others may present with extra-intestinal manifestations that makes the treatment with one biologic challenging. Dual target therapy (DTT), combining biologics and/or small molecule drugs, may offer a chance to achieve remission in these cases and improve patients' quality of life despite the limited evidence regarding this approach. We present a case series of refractory inflammatory bowel disease cases managed with DTT. Seven patients with refractory IBD achieved steroid free, clinical, and endoscopic remission by using DTT. These results support that DTT could be an effective approach in selected patients with refractory IBD or with concomitant extra-intestinal manifestations (EIM). Larger studies, ideally randomized controlled trials, are needed to further support the evidence and confirm the efficacy and safety of DTT for IBD.
  2. Anwar F, Saleem U, Ahmad B, Ashraf M, Rehman AU, Froeyen M, et al.
    Comput Biol Chem, 2020 Dec;89:107378.
    PMID: 33002716 DOI: 10.1016/j.compbiolchem.2020.107378
    Neurodegenerative diseases have complex etiology and pose a challenge to scientists to develop simple and cost-effective synthetic compounds as potential drug candidates for such diseases. Here, we report an extension of our previously published in silico screening, where we selected four new compounds as AChE inhibitors. Further, based on favorable binding possess, MD simulation and MMGBSA, two most promising compounds (3a and 3b) were selected, keeping in view the ease of synthesis and cost-effectiveness. Due to the critical role of BChE, LOX and α-glucosidase in neurodegeneration, the selected compounds were also screened against these enzymes. The IC50 values of 3a against AChE and BChE found to be 12.53 and 352.42 μM, respectively. Moderate to slight inhibitions of 45.26 % and 28.68 % were presented by 3a against LOX and α-glucosidase, respectively, at 0.5 mM. Insignificant inhibitions were observed with 3b against the four selected enzymes. Further, in vivo trial demonstrated that 3a could significantly diminish AChE levels in the mice brain as compared to the control. These findings were in agreement with the histopathological analysis of the brain tissues. The results corroborate that selected compounds could serve as a potential lead for further development and optimization as AChE inhibitors to achieve cost-effective anti-Alzheimer's drugs.
  3. Mirza MU, Ahmad S, Abdullah I, Froeyen M
    Comput Biol Chem, 2020 Dec;89:107376.
    PMID: 32979815 DOI: 10.1016/j.compbiolchem.2020.107376
    Human ubiquitin carboxyl-terminal hydrolase-2 (USP2) inhibitors, such as thiopurine analogs, have been reported to inhibit SARS-CoV papain-like proteases (PLpro). The PLpro have significant functional implications in the innate immune response during SARS-CoV-2 infection and considered an important antiviral target. Both proteases share strikingly similar USP fold with right-handed thumb-palm-fingers structural scaffold and conserved catalytic triad Cys-His-Asp/Asn. In this urgency situation of COVID-19 outbreak, there is a lack of in-vitro facilities readily available to test SARS-CoV-2 inhibitors in whole-cell assays. Therefore, we adopted an alternate route to identify potential USP2 inhibitor through integrated in-silico efforts. After an extensive virtual screening protocol, the best compounds were selected and tested. The compound Z93 showed significant IC50 value against Jurkat (9.67 μM) and MOTL-4 cells (11.8 μM). The binding mode of Z93 was extensively analyzed through molecular docking, followed by MD simulations, and molecular interactions were compared with SARS-CoV-2. The relative binding poses of Z93 fitted well in the binding site of both proteases and showed consensus π-π stacking and H-bond interactions with histidine and aspartate/asparagine residues of the catalytic triad. These results led us to speculate that compound Z93 might be the first potential chemical lead against SARS-CoV-2 PLpro, which warrants in-vitro evaluations.
  4. Ahmad S, Usman Mirza M, Yean Kee L, Nazir M, Abdul Rahman N, Trant JF, et al.
    Chem Biol Drug Des, 2021 Oct;98(4):604-619.
    PMID: 34148292 DOI: 10.1111/cbdd.13914
    3CLpro is essential for SARS-CoV-2 replication and infection; its inhibition using small molecules is a potential therapeutic strategy. In this study, a comprehensive crystallography-guided fragment-based drug discovery approach was employed to design new inhibitors for SARS-CoV-2 3CLpro. All small molecules co-crystallized with SARS-CoV-2 3CLpro with structures deposited in the Protein Data Bank were used as inputs. Fragments sitting in the binding pocket (87) were grouped into eight geographical types. They were interactively coupled using various synthetically reasonable linkers to generate larger molecules with divalent binding modes taking advantage of two different fragments' interactions. In total, 1,251 compounds were proposed, and 7,158 stereoisomers were screened using Glide (standard precision and extra precision), AutoDock Vina, and Prime MMGBSA. The top 22 hits having conformations approaching the linear combination of their constituent fragments were selected for MD simulation on Desmond. MD simulation suggested 15 of these did adopt conformations very close to their constituent pieces with far higher binding affinity than either constituent domain alone. These structures could provide a starting point for the further design of SARS-CoV-2 3CLpro inhibitors with improved binding, and structures are provided.
  5. Zainuddin SY, Ahmad I, Kargarzadeh H, Abdullah I, Dufresne A
    Carbohydr Polym, 2013 Feb 15;92(2):2299-305.
    PMID: 23399291 DOI: 10.1016/j.carbpol.2012.11.106
    Biodegradable materials made from cassava starch and kenaf fibers were prepared using a solution casting method. Kenaf fibers were treated with NaOH, bleached with sodium chlorite and acetic buffer solution, and subsequently acid hydrolyzed to obtain cellulose nanocrystals (CNCs). Biocomposites in the form of films were prepared by mixing starch and glycerol/sorbitol with various filler compositions (0-10 wt%). X-ray diffraction revealed that fiber crystallinity increased after each stage of treatment. Morphological observations and size reductions of the extracted cellulose and CNCs were studied using field emission scanning electron microscopy and transmission electron microscopy. The effects of different treatments and filler contents of the biocomposites were evaluated through mechanical tests. Results showed that the tensile strengths and moduli of the biocomposites increased after each treatment and the optimum filler content was 6%.
  6. Rosli NA, Ahmad I, Abdullah I, Anuar FH, Mohamed F
    Carbohydr Polym, 2015 Jul 10;125:69-75.
    PMID: 25857961 DOI: 10.1016/j.carbpol.2015.03.002
    Graft copolymerisation of methyl methacrylate (MMA) onto Agave angustifolia was conducted with ceric ammonium nitrate (CAN) as the redox initiator. The maximum grafting efficiency was observed at CAN and MMA concentrations of 0.91 × 10(-3) and 5.63 × 10(-2)M, respectively, at 45°C for 3h reaction time. Four characteristic peaks at 2995, 1738, 1440, and 845 cm(-1), attributed to PMMA, were found in the IR spectrum of grafted cellulose. The crystallinity index dropped from 0.74 to 0.46, while the thermal stability improved upon grafting. The water contact angle increased with grafting yield, indicating increased hydrophobicity of cellulose. SEM images showed the grafted cellulose to be enlarged and rougher. The changes in the physical nature of PMMA-grafted cellulose can be attributed to the PMMA grafting in the amorphous regions of cellulose, causing it to expand at the expense of the crystalline component.
  7. Rosli NA, Ahmad I, Anuar FH, Abdullah I
    Carbohydr Polym, 2019 Jun 01;213:50-58.
    PMID: 30879689 DOI: 10.1016/j.carbpol.2019.02.074
    In this study, modified agave cellulose fibre combined by graft copolymerisation with methylmethacrylate was tested as a potential reinforcement for polylactic acid (PLA)-natural rubber/liquid natural rubber blends. Mechanical, morphological, thermal, wetting, and biodegradation characterisations were performed to assess the influence of cellulose-graft-polymethylmethacrylate (cell-g-PMMA) content on the properties of biocomposites. The addition of cell-g-PMMA improved the mechanical properties of the composites because of the chemical interaction between PLA and PMMA. Thermal stability decreased slightly upon cell-g-PMMA addition because of the low thermal stability of PMMA. A soil burial test revealed that the degradation of composites decreased with an increase in the cell-g-PMMA content. However, the weight loss after burial, which directly affected the water absorption capacity, was still higher for the cell-g-PMMA composites than for the polymer alone.
  8. Abdullah I, Chee CF, Lee YK, Thunuguntla SSR, Satish Reddy K, Nellore K, et al.
    Bioorg Med Chem, 2015 Aug 01;23(15):4669-4680.
    PMID: 26088338 DOI: 10.1016/j.bmc.2015.05.051
    Poly (ADP-ribose) polymerases (PARPs) play diverse roles in various cellular processes that involve DNA repair and programmed cell death. Amongst these polymerases is PARP-1 which is the key DNA damage-sensing enzyme that acts as an initiator for the DNA repair mechanism. Dihydroorotate dehydrogenase (DHODH) is an enzyme in the pyrimidine biosynthetic pathway which is an important target for anti-hyperproliferative and anti-inflammatory drug design. Since these enzymes share a common role in the DNA replication and repair mechanisms, it may be beneficial to target both PARP-1 and DHODH in attempts to design new anti-cancer agents. Benzimidazole derivatives have shown a wide variety of pharmacological activities including PARP and DHODH inhibition. We hereby report the design, synthesis and bioactivities of a series of benzimidazole derivatives as inhibitors of both the PARP-1 and DHODH enzymes.
  9. BasheeruddinAsdaq SM, Naveen NR, Gunturu LN, Pamayyagari K, Abdullah I, Sreeharsha N, et al.
    Biomed Res Int, 2021;2021:9195965.
    PMID: 34977249 DOI: 10.1155/2021/9195965
    Since its outbreak, the coronavirus (COVID-19) pandemic has caused havoc on people's lives. All activities were paused due to the virus's spread across the continents. Researchers have been working hard to find new medication treatments for the COVID-19 pandemic. The World Health Organization (WHO) recommends that safety and self-measures play a major role in preventing the virus from spreading from one person to another. Wireless technology is playing a critical role in avoiding viral propagation. This technology mainly comprises of portable devices that assist self-isolated patients in adhering to safe precautionary measures. Government officials are currently using wireless technologies to identify infected people at large gatherings. In this research, we gave an overview of wireless technologies that assisted the general public and healthcare professionals in maintaining effective healthcare services during COVID-19. We also discussed the possible challenges faced by them for effective implementation in day-to-day life. In conclusion, wireless technologies are one of the best techniques in today's age to effectively combat the pandemic.
  10. Chee CW, Mohd Hashim N, Abdullah I, Nor Rashid N
    PMID: 37642925 DOI: 10.1007/s12010-023-04690-9
    Morindone, a natural anthraquinone compound, has been reported to have significant pharmacological properties in different cancers. However, its anticancer effects in colorectal cancer (CRC) and the underlying molecular mechanisms remain obscure. In this study, RNA sequencing was used to assess the differentially expressed genes (DEGs) following morindone treatment in two CRC cell lines, HCT116 and HT29 cells. Functional enrichment analysis of overlapping DEGs revealed that negative regulation of cell development from biological processes and the MAPK signalling pathway were the most significant Gene Ontology terms and Kyoto Encyclopaedia of Genes and Genome pathway, respectively. Seven hub genes were identified among the overlapping genes, including MCM5, MCM6, MCM10, GINS2, POLE2, PRIM1, and WDHD1. All hub genes were found downregulated and involved in DNA replication fork. Among these, GINS2 was identified as the most cancer-dependent gene in both cells with better survival outcomes. Validation was performed on seven hub genes with rt-qPCR, and the results were consistent with the RNA sequencing findings. Collectively, this study provides corroboration of the potential therapeutic benefits and suitable pharmacological targets of morindone in the treatment of CRC.
  11. Ahmad S, Hussain A, Hussain A, Abdullah I, Ali MS, Froeyen M, et al.
    Antioxidants (Basel), 2019 Jun 19;8(6).
    PMID: 31248160 DOI: 10.3390/antiox8060185
    Cisplatin is amongst the most potent chemotherapeutic drugs with applications in more than 50% of cancer treatments, but dose-dependent side effects limit its usefulness. Berberis vulgaris L. (B. vulgaris) has a proven role in several therapeutic applications in the traditional medicinal system. High-performance liquid chromatography was used to quantify berberine, a potent alkaloid in the methanolic root extract of B. vulgaris (BvRE). Berberine chloride in BvRE was found to be 10.29% w/w. To assess the prophylactic and curative protective effects of BvRE on cisplatin-induced nephrotoxicity, hepatotoxicity, and hyperlipidemia, in vivo toxicity trials were carried out on 25 healthy male albino Wistar rats (130-180 g). Both prophylactic and curative trials included a single dose of cisplatin (4 mg/kg, i.p.) and nine doses of BvRE (500 mg/kg/day, orally). An array of marked toxicity effects appeared in response to cisplatin dosage evident by morphological condition, biochemical analysis of serum (urea, creatinine, total protein, alanine transaminase, aspartate transaminase, total cholesterol, and triglyceride), and organ tissue homogenates (malondialdehyde and catalase). Statistically-significant (p < 0.05) variations were observed in various parameters. Moreover, histological studies of liver and kidney tissues revealed that the protective effect of BvRE effectively minimized and reversed nephrotoxic, hepatotoxic, and hyperlipidemic effects caused by cisplatin in both prophylactic and curative groups with relatively promising ameliorative effects in the prophylactic regimen. The in vitro cell viability effect of cisplatin, BvRE, and their combination was determined on HeLa cells using the tetrazolium (MTT) assay. MTT clearly corroborated that HeLa cells appeared to be less sensitive to cisplatin and berberine individually, while the combination of both at the same concentrations resulted in growth inhibition of HeLa cells in a remarkable synergistic way. The present study validated the use of BvRE as a protective agent in combination therapy with cisplatin.
  12. Saleem F, Mehmood R, Mehar S, Khan MTJ, Khan ZU, Ashraf M, et al.
    Antioxidants (Basel), 2019 Jul 19;8(7).
    PMID: 31331076 DOI: 10.3390/antiox8070231
    Members of genus Pteris have their established role in the traditional herbal medicine system. In the pursuit to identify its biologically active constituents, the specie Pteris cretica L. (P. cretica) was selected for the bioassay-guided isolation. Two new maleates (F9 and CB18) were identified from the chloroform extract and the structures of the isolates were elucidated through their spectroscopic data. The putative targets, that potentially interact with both of these isolates, were identified through reverse docking by using in silico tools PharmMapper and ReverseScreen3D. On the basis of reverse docking results, both isolates were screened for their antioxidant, acetylcholinesterase (AChE) inhibition, α-glucosidase (GluE) inhibition and antibacterial activities. Both isolates depicted moderate potential for the selected activities. Furthermore, docking studies of both isolates were also studied to investigate the binding mode with respective targets followed by molecular dynamics simulations and binding free energies. Thereby, the current study embodies the poly-pharmacological potential of P. cretica.
  13. Dala Ali AHH, Harun SN, Othman N, Ibrahim B, Abdulbagi OE, Abdullah I, et al.
    Antibiotics (Basel), 2023 Aug 10;12(8).
    PMID: 37627725 DOI: 10.3390/antibiotics12081305
    In the management of sepsis, providing adequate empiric antimicrobial therapy is one of the most important pillars of sepsis management. Therefore, it is important to evaluate the adequacy of empiric antimicrobial therapy (EAMT) in sepsis patients admitted to intensive care units (ICU) and to identify the determinants of inadequate EAMT. The aim of this study was to evaluate the adequacy of empiric antimicrobial therapy in patients admitted to the ICU with sepsis or septic shock, and the determinants of inadequate EAMT. The data of patients admitted to the ICU units due to sepsis or septic shock in two tertiary healthcare facilities in Al-Madinah Al-Munawwarah were retrospectively reviewed. The current study used logistic regression analysis and artificial neural network (ANN) analysis to identify determinants of inadequate empiric antimicrobial therapy, and evaluated the performance of these two approaches in predicting the inadequacy of EAMT. The findings of this study showed that fifty-three per cent of patients received inadequate EAMT. Determinants for inadequate EAMT were APACHE II score, multidrug-resistance organism (MDRO) infections, surgical history (lower limb amputation), and comorbidity (coronary artery disease). ANN performed as well as or better than logistic regression in predicating inadequate EAMT, as the receiver operating characteristic area under the curve (ROC-AUC) of the ANN model was higher when compared with the logistic regression model (LRM): 0.895 vs. 0.854. In addition, the ANN model performed better than LRM in predicting inadequate EAMT in terms of classification accuracy. In addition, ANN analysis revealed that the most important determinants of EAMT adequacy were the APACHE II score and MDRO. In conclusion, more than half of the patients received inadequate EAMT. Determinants of inadequate EAMT were APACHE II score, MDRO infections, comorbidity, and surgical history. This provides valuable inputs to improve the prescription of empiric antimicrobials in Saudi Arabia going forward. In addition, our study demonstrated the potential utility of applying artificial neural network analysis in the prediction of outcomes in healthcare research.
  14. Tehami M, Imam HT, Abdullah I, Hosford J, Wong XJ, Rahman NA, et al.
    ACS Sustain Chem Eng, 2024 Feb 19;12(7):2678-2685.
    PMID: 38389905 DOI: 10.1021/acssuschemeng.3c06758
    1,4-Benzoxazines are important motifs in many pharmaceuticals and can be formed by a reaction sequence involving the oxidation of o-aminophenols to their corresponding quinone imine followed by an in situ inverse electron demand Diels-Alder (IEDDA) cycloaddition with a suitable dienophile. Reported herein is the development of a reaction sequence that employs horseradish peroxidase to catalyze the oxidation of the aminophenols prior to the IEDDA as a more sustainable alternative to the use of conventional stoichiometric oxidants. The synthesis of 10 example benzoxazines is demonstrated in this "one-pot, two-step" procedure with yields between 42% and 92%. The green chemistry metrics, including the E-factor and generalized reaction mass efficiency, for this biocatalytic reaction were compared against the conventional chemical approach. It was found that the reported biocatalytic route was approximately twice as green by these measures.
  15. Anwar F, Saleem U, Rehman AU, Ahmad B, Ismail T, Mirza MU, et al.
    ACS Omega, 2021 Apr 27;6(16):10897-10909.
    PMID: 34056243 DOI: 10.1021/acsomega.1c00654
    Toxicity studies are necessary for the development of a new drug. Naphthalene is a bicyclic molecule and is easy to derivatize. In our previous study, a derivative of naphthalene (4-phenyl,3,4-dihydrobenzoquinoline-2(H)one) was synthesized and reported its in vitro activity on different enzymes. This study was a probe to investigate the toxicity potential of that compound (SF3). Acute oral (425), subacute (407), and teratogenicity (414) studies were planned according to their respective guidelines given by organization of economic cooperation and development (OECD). Acute oral, subacute, and teratogenicity studies were carried out on 2000, 5-40, and 40 mg/kg doses. Blood samples were collected for hematological and biochemical analyses. Vital organs were excised for oxidative stress (superoxide dismutase, catalase, glutathione, and malondialdehyde) and histopathological analysis. LD 50 of SF3 was higher than 2000 mg/kg. In acute and subacute studies, levels of alkaline phosphates and aspartate transaminase were increased. Teratogenicity showed no resorptions, no skeletal or soft tissue abnormalities, and no cleft pallet. Oxidative stress biomarkers were close to the normal, and no increase in the malondialdehyde level was seen. Histopathological studies revealed normal tissue architecture of the selected organs, except kidney, in acute oral and subacute toxicity studies at 40 mg/kg. The study concluded that SF3 is safer if used as a drug.
  16. Li H, Khoury M, Bonef B, Alhassan AI, Mughal AJ, Azimah E, et al.
    ACS Appl Mater Interfaces, 2017 Oct 18;9(41):36417-36422.
    PMID: 28960058 DOI: 10.1021/acsami.7b11718
    We demonstrate efficient semipolar (11-22) 550 nm yellow/green InGaN light-emitting diodes (LEDs) with In0.03Ga0.97N barriers on low defect density (11-22) GaN/patterned sapphire templates. The In0.03Ga0.97N barriers were clearly identified, and no InGaN clusters were observed by atom probe tomography measurements. The semipolar (11-22) 550 nm InGaN LEDs (0.1 mm2 size) show an output power of 2.4 mW at 100 mA and a peak external quantum efficiency of 1.3% with a low efficiency drop. In addition, the LEDs exhibit a small blue-shift of only 11 nm as injection current increases from 5 to 100 mA. These results suggest the potential to produce high efficiency semipolar InGaN LEDs with long emission wavelength on large-area sapphire substrates with economical feasibility.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links