Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Sulaiman MS, Anuar ST, Ibrahim YS, Yusof KMKK, Mohamad Y, Khalik WMAWM, et al.
    Mar Pollut Bull, 2025 Jan 06;212:117527.
    PMID: 39765184 DOI: 10.1016/j.marpolbul.2025.117527
    Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.91 ± 0.80 g/item (dry weight). Scanning Electron Microscopy revealed that the macroplastics had weathered slowly in the environment, potentially breaking down into smaller microplastic particles. Biofilms and dead phytoplankton were observed on the plastic surfaces, suggesting that plastic debris may act as vectors for other pollutants. The study used SWAT modelling to simulate physical processes in the Klang River Basin and compute pollutant loads through a loading computation procedure. A macroplastic rating curve was created using river discharge, macroplastic loadings, and associate parameters to estimate plastic loading in the river. The fitted equation models macroplastic loading as a function of river discharge and width, expressed as: log(y) = 1.88216-7.36528log(x) - 4.00491log(x2). Here, log(x) represents the ratio of river discharge to river width, while log(y) denotes macroplastic loading adjusted for sampler width and river width. Results indicated that macroplastic transport in the river system is linked to flow rates and sediment yield, which vary due to topographical factors, with an estimated macroplastics yield in the Klang River Basin of 11,600 kg/day. The findings suggest that a river-specific monitoring programs should be conducted to generate comprehensive datasets, integrating both macroplastics and microplastics abundance, which can be utilized for projecting plastic emissions from Malaysian rivers and comparing data with other river basins in the Southeast Asia.
  2. Ling KH, Brautigan PJ, Moore S, Fraser R, Leong MP, Leong JW, et al.
    Data Brief, 2016 Jun;7:282-90.
    PMID: 26958646 DOI: 10.1016/j.dib.2016.01.045
    SRY (Sex Determining Region Y)-Box 4 or Sox4 is an important regulator of the pan-neuronal gene expression during post-mitotic cell differentiation within the mammalian brain. Sox4 gene locus has been previously characterized with multiple sense and overlapping natural antisense transcripts [1], [2]. Here we provide accompanying data on various analyses performed and described in Ling et al. [2]. The data include a detail description of various features found at Sox4 gene locus, additional experimental data derived from RNA-Fluorescence in situ Hybridization (RNA-FISH), Western blotting, strand-specific reverse-transcription quantitative polymerase chain reaction (RT-qPCR), gain-of-function and in situ hybridization (ISH) experiments. All the additional data provided here support the existence of an endogenous small interfering- or PIWI interacting-like small RNA known as Sox4_sir3, which origin was found within the overlapping region consisting of a sense and a natural antisense transcript known as Sox4ot1.
  3. Zainal Abidin S, Tan EL, Chan SC, Jaafar A, Lee AX, Abd Hamid MH, et al.
    BMC Neurol, 2015;15:59.
    PMID: 25896831 DOI: 10.1186/s12883-015-0316-2
    Impulse control disorder (ICD) and behaviours (ICB) represent a group of behavioural disorders that have become increasingly recognised in Parkinson's disease (PD) patients who previously used dopaminergic medications, particularly dopamine agonists and levodopa. It has been suggested that these medications can lead to the development of ICB through the abnormal modulation of dopaminergic transmission and signalling in the mesocorticolimbic dopaminergic system. Several studies have reported an association between polymorphisms in the dopamine receptor (DRD) and N-methyl-D-aspartate 2B (GRIN2B) genes with the development of ICB in PD (PD-ICB) patients. Thus, this study aimed to investigate the association of selected polymorphisms within the DRD and GRIN2B genes with the development of ICB among PD patients using high resolution melt (HRM) analysis.
  4. Lee HC, Hamzah H, Leong MP, Md Yusof H, Habib O, Zainal Abidin S, et al.
    Sci Rep, 2021 Feb 15;11(1):3847.
    PMID: 33589712 DOI: 10.1038/s41598-021-83222-z
    Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.
  5. Ahmad Mohd Zain MR, Abdul Kari Z, Dawood MAO, Nik Ahmad Ariff NS, Salmuna ZN, Ismail N, et al.
    Appl Biochem Biotechnol, 2022 Oct;194(10):4587-4624.
    PMID: 35579740 DOI: 10.1007/s12010-022-03952-2
    A novel coronavirus disease (COVID-19) or severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2), transmitted from person to person, has quickly emerged as the pandemic responsible for the current global health crisis. This infection has been declared a global pandemic, resulting in a concerning number of deaths as well as complications post-infection, primarily among vulnerable groups particularly older people and those with multiple comorbidities. In this article, we review the most recent research on the role of date palm (Phoenix dactylifera L.) fruits (DPFs) to prevent or treat COVID-19 infection. The mechanisms underlying this preventive or therapeutic effect are also discussed in terms of bioactivity potentials in date palm, e.g., antimicrobial, antioxidant, anticancer, anti-diabetic, anti-inflammatory, neuroprotective, and hemolytic potential, as well as prospect against COVID-19 disease and the potential product development. Therefore, it can be concluded that regular consumption of DPFs may be associated with a lower risk of some chronic diseases. Indeed, DPFs have been widely used in folk medicine since ancient times to treat a variety of health conditions, demonstrating the importance of DPFs as a nutraceutical and source of functional nourishment. This comprehensive review aims to summarize the majority of the research on DPFs in terms of nutrient content and biologically active components such as phenolic compounds, with an emphasis on their roles in improving overall health as well as the potential product development to ensure consumers' satisfaction in a current pandemic situation. In conclusion, DPFs can be given to COVID-19 patients as a safe and effective add-on medication or supplement in addition to routine treatments.
  6. Jeys LM, Thorkildsen J, Kurisunkal V, Puri A, Ruggieri P, Houdek MT, et al.
    Bone Joint J, 2024 May 01;106-B(5):425-429.
    PMID: 38689572 DOI: 10.1302/0301-620X.106B5.BJJ-2023-1381
    Chondrosarcoma is the second most common surgically treated primary bone sarcoma. Despite a large number of scientific papers in the literature, there is still significant controversy about diagnostics, treatment of the primary tumour, subtypes, and complications. Therefore, consensus on its day-to-day treatment decisions is needed. In January 2024, the Birmingham Orthopaedic Oncology Meeting (BOOM) attempted to gain global consensus from 300 delegates from over 50 countries. The meeting focused on these critical areas and aimed to generate consensus statements based on evidence amalgamation and expert opinion from diverse geographical regions. In parallel, periprosthetic joint infection (PJI) in oncological reconstructions poses unique challenges due to factors such as adjuvant treatments, large exposures, and the complexity of surgery. The meeting debated two-stage revisions, antibiotic prophylaxis, managing acute PJI in patients undergoing chemotherapy, and defining the best strategies for wound management and allograft reconstruction. The objectives of the meeting extended beyond resolving immediate controversies. It sought to foster global collaboration among specialists attending the meeting, and to encourage future research projects to address unsolved dilemmas. By highlighting areas of disagreement and promoting collaborative research endeavours, this initiative aims to enhance treatment standards and potentially improve outcomes for patients globally. This paper sets out some of the controversies and questions that were debated in the meeting.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links