Displaying publications 21 - 40 of 116 in total

Abstract:
Sort:
  1. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Jun;25(6):1647-52.
    PMID: 21358428 DOI: 10.1519/JSC.0b013e3181db9f41
    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.
  2. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Apr;25(4):1177-81.
    PMID: 20838249 DOI: 10.1519/JSC.0b013e3181d6508c
    This study investigated the number of trials necessary to obtain optimal biomechanical responses in 10 consecutive soccer instep kicks. The kicking motions of dominant legs were captured from 5 experienced and skilled adult male soccer players (height: 184.60 ± 4.49 cm; mass: 80 ± 4.24 kg; and age: 25.60 ± 1.14 years) using a 3D infrared high-speed camera at 200 Hz. Some of the important kinematics and kinetics parameters are maximum thigh angular velocity, maximum lower leg angular velocity, maximum of thigh moment, maximum lower leg moment at forward and impact phases, and finally maximum ball velocity after impact selected to be analyzed. There was a significant decrease of ball velocity between the first and the fifth kick and the subsequent kicks. Similarly, the lower leg angular velocity showed a significant decrease after the fifth kick and thereafter. Compared with the first kick, the thigh angular velocity has been shown to decrease after the sixth kick and thereafter, and the thigh moment result of the sixth kick was significantly lower when compared with the first kick. Moreover, the lower leg moment result of the fourth kick was significantly lower in comparison with the first kick. In conclusion, it seems that 5 consecutive kicks are adequate to achieve high kinematics and kinetics responses and selecting more than 5 kicks does not result in any high biomechanical responses for analysis.
  3. Chan BT, Lim E, Chee KH, Abu Osman NA
    Comput Biol Med, 2013 May;43(4):377-85.
    PMID: 23428371 DOI: 10.1016/j.compbiomed.2013.01.013
    The heart is a sophisticated functional organ that plays a crucial role in the blood circulatory system. Hemodynamics within the heart chamber can be indicative of exert cardiac health. Due to the limitations of current cardiac imaging modalities, computational fluid dynamics (CFD) have been widely used for the purposes of cardiac function assessment and heart disease diagnosis, as they provide detailed insights into the cardiac flow field. An understanding of ventricular hemodynamics and pathological severities can be gained through studies that employ the CFD method. In this research the hemodynamics of two common myocardial diseases, dilated cardiomyopathy (DCM) and myocardial infarction (MI) were investigated, during both the filling phase and the whole cardiac cycle, through a prescribed geometry and fluid structure interaction (FSI) approach. The results of the research indicated that early stage disease identification and the improvement of cardiac assisting devices and therapeutic procedures can be facilitated through the use of the CFD method.
  4. Ghazali MF, Abd Razak NA, Abu Osman NA, Gholizadeh H
    Turk J Phys Med Rehabil, 2018 Sep;64(3):268-276.
    PMID: 31453521 DOI: 10.5606/tftrd.2018.1668
    Objectives: This study aims to assess the level of awareness of transtibial amputee patients on stump contractures and their compliance with efforts implemented to prevent the condition.

    Patients and methods: This study included 50 unilateral transtibial amputees (26 males, 24 females; mean age 55.4±14.7 years; range, 18 to 78 years) who met the respondent criteria of the study. The respondents were randomly selected and were issued with a questionnaire.

    Results: The majority of the transtibial amputees were aware of stump contracture complications. It was found that they also preferred methods of prevention which required less effort, was cost-effective, and were also practical.

    Conclusion: More focus should be placed on contracture prevention methods which were most complied with by the patients. This is because the effectiveness of a prevention method is highly influenced by patients' compliance with the method. Patients with a higher risk of developing stump contractures should be also given more attention in post-amputation care.

  5. Hashim NA, Abd Razak NA, Gholizadeh H, Abu Osman NA
    JMIR Serious Games, 2021 Feb 04;9(1):e17017.
    PMID: 33538698 DOI: 10.2196/17017
    BACKGROUND: Brain plasticity is an important factor in prosthesis usage. This plasticity helps with brain adaptation to learn new movement and coordination patterns needed to control a prosthetic hand. It can be achieved through repetitive muscle training that is usually very exhausting and often results in considerable reduction in patient motivation. Previous studies have shown that a playful concept in rehabilitation can increase patient engagement and perseverance.

    OBJECTIVE: This study investigated whether the inclusion of video games in the upper limb amputee rehabilitation protocol could have a beneficial impact for muscle preparation, coordination, and patient motivation among individuals who have undergone transradial upper limb amputation.

    METHODS: Ten participants, including five amputee participants and five able-bodied participants, were enrolled in 10 1-hour sessions within a 4-week rehabilitation program. In order to investigate the effects of the rehabilitation protocol used in this study, virtual reality box and block tests and electromyography (EMG) assessments were performed. Maximum voluntary contraction was measured before, immediately after, and 2 days after interacting with four different EMG-controlled video games. Participant motivation was assessed with the Intrinsic Motivation Inventory (IMI) questionnaire and user evaluation survey.

    RESULTS: Survey analysis showed that muscle strength and coordination increased at the end of training for all the participants. The results of Pearson correlation analysis indicated that there was a significant positive association between the training period and the box and block test score (r8=0.95, P

  6. Sobh KNM, Abd Razak NA, Abu Osman NA
    Proc Inst Mech Eng H, 2021 Apr;235(4):419-427.
    PMID: 33517847 DOI: 10.1177/0954411920985753
    Electromyography signal has been used widely as input for prosthetic's leg movements. C-Leg, for example, is among the prosthetics devices that use electromyography as the main input. The main challenge facing the industrial party is the position of the electromyography sensor as it is fixed inside the socket. The study aims to investigate the best positional parameter of electromyography for transtibial prosthetic users for the device to be effective in multiple movement activities and compare with normal human muscle's activities. DELSYS Trigno wireless electromyography instrument was used in this study to achieve this aim. Ten non-amputee subjects and two transtibial amputees were involved in this study. The surface electromyography signals were recorded from two anterior and posterior below the knee muscles and above the knee muscles, respectively: tibial anterior and gastrocnemius lateral head as well as rectus femoris and biceps femoris during two activities (flexion and extension of knee joint and gait cycle for normal walking). The result during flexion and extension activities for gastrocnemius lateral head and biceps femoris muscles was found to be more useful for the control subjects, while the tibial anterior and also gastrocnemius lateral head are more active for amputee subjects. Also, during normal walking activity for biceps femoris and gastrocnemius lateral head, it was more useful for the control subjects, while for transtibial amputee subject-1, the rectus femoris was the highest signal of the average normal walking activity (0.0001 V) compared to biceps femoris (0.00007 V), as for transtibial amputee subject-2, the biceps femoris was the highest signals of the average normal walking activity (0.0001 V) compared to rectus femoris (0.00004 V). So, it is difficult to rely entirely on the static positioning of the electromyography sensor within the socket as there is a possibility of the sensor to contact with inactive muscle, which will be a gap in the control, leading to a decrease in the functional efficiency of the powered prostheses.
  7. Al-Fakih EA, Abu Osman NA, Mahmad Adikan FR
    Sensors (Basel), 2016 Jul 20;16(7).
    PMID: 27447646 DOI: 10.3390/s16071119
    The distribution of interface stresses between the residual limb and prosthetic socket of a transtibial amputee has been considered as a direct indicator of the socket quality fit and comfort. Therefore, researchers have been very interested in quantifying these interface stresses in order to evaluate the extent of any potential damage caused by the socket to the residual limb tissues. During the past 50 years a variety of measurement techniques have been employed in an effort to identify sites of excessive stresses which may lead to skin breakdown, compare stress distributions in various socket designs, and evaluate interface cushioning and suspension systems, among others. The outcomes of such measurement techniques have contributed to improving the design and fitting of transtibial sockets. This article aims to review the operating principles, advantages, and disadvantages of conventional and emerging techniques used for interface stress measurements inside transtibial sockets. It also reviews and discusses the evolution of different socket concepts and interface stress investigations conducted in the past five decades, providing valuable insights into the latest trends in socket designs and the crucial considerations for effective stress measurement tools that lead to a functional prosthetic socket.
  8. Pramanik S, Pingguan-Murphy B, Abu Osman NA
    Sci Technol Adv Mater, 2012 Aug;13(4):043002.
    PMID: 27877500
    There has been unprecedented development in tissue engineering (TE) over the last few years owing to its potential applications, particularly in bone reconstruction or regeneration. In this article, we illustrate several advantages and disadvantages of different approaches to the design of electrospun TE scaffolds. We also review the major benefits of electrospun fibers for three-dimensional scaffolds in hard connective TE applications and identify the key strategies that can improve the mechanical properties of scaffolds for bone TE applications. A few interesting results of recent investigations have been explained for future trends in TE scaffold research.
  9. Ching HA, Choudhury D, Nine MJ, Abu Osman NA
    Sci Technol Adv Mater, 2014 Feb;15(1):014402.
    PMID: 27877638
    Coatings such as diamond-like carbon (DLC) and titanium nitride (TiN) are employed in joint implants due to their excellent tribological properties. Recently, graphite-like carbon (GLC) and tantalum (Ta) have been proven to have good potential as coating as they possess mechanical properties similar to bones-high hardness and high flexibility. The purpose of this systematic literature review is to summarize the coating techniques of these four materials in order to compare their mechanical properties and tribological outcomes. Eighteen studies published between January 2000 and February 2013 have met the inclusion criteria for this review. Details of their fabrication parameters, material and mechanical properties along with the tribological outcomes, such as friction and wear rate, were identified and are presented in a systematic way. Although experiment conditions varied, we conclude that Ta has the lowest wear rate compared to DLC, GLC and TiN because it has a lower wear rate with high contact pressure as well as higher hardness to elasticity ratio. However, a further tribology test is needed in an environment which replicates artificial joints to confirm the acceptability of these findings.
  10. Shaari IH, Abu Osman NA, Shasmin HN
    Proc Inst Mech Eng H, 2020 Aug;234(8):884-894.
    PMID: 32459140 DOI: 10.1177/0954411920923541
    Many studies have shown that medical compression products produce different levels of interface pressure during the usage of the products. However, limited studies have explored the pattern of interface pressure exerted by orthotic garments. This case study aimed to investigate the pattern of interface pressure exerted by two types of orthotic garments on a child with cerebral palsy. A 13-year-old child diagnosed with ataxic spastic diplegia cerebral palsy has difficulty to perform sit-to-stand motion even with a walking frame due to his truncal ataxia. A TheraTogsTM orthosis and a Dynamic Lycra® Fabric Orthosis (DLFO) were prepared for the child. The child's sit-to-stand ability without and with the usage of orthoses was recorded using five sit-to-stand tests. The garments' interface pressure was measured using F-scan (9811E) and F-scan 6.5.1 version software. The pressure was recorded when the child was in sitting position and performing sit-to-stand-to-sit motion. Overall, the child completed the five sit-to-stand test duration within 2.53 ± 0.04 s and 2.51 ± 0.09 s with the usage of TheraTogsTM orthosis and DLFO, respectively. Higher pressure was exerted by Dynamic Lycra Fabric Orthosis (axillary = 122 mmHg) in contrast to TheraTogsTM orthosis (77 mmHg) when the child was in a sitting position. Lower pressure was exerted by DLFO (7 mmHg), over xiphoid level and for TheraTogsTM orthosis is 1.2 mmHg over axillary level when the child was performing sit-to-stand motion. The largest range of pressure was exerted by TheraTogsTM orthosis with a minimum pressure of 5 mmHg and a maximum pressure of 155 mmHg during sit-to-stand motion. Overall, the DLFO exerted higher mean interface pressure on the child in comparison to TheraTogsTM orthosis when the child's body was in a sitting position wearing both upper garment and pants. Both TheraTogsTM orthosis and DLFO presented a different range of interface pressure over different body segments and activities.
  11. Abu Osman NA, Gholizadeh H, Eshraghi A, Wan Abas WAB
    Prosthet Orthot Int, 2017 Oct;41(5):476-483.
    PMID: 28946824 DOI: 10.1177/0309364616670396
    OBJECTIVES: This study aimed to evaluate and compare a newly designed suspension system with a common suspension in the market.

    STUDY DESIGN: Prospective study.

    METHODS: Looped liners with hook fastener and Iceross Dermo Liner with pin/lock system were mechanically tested using a tensile testing machine in terms of system safety. A total of 10 transtibial amputees participated in this study and were asked to use these two different suspension systems. The pistoning was measured between the liner and socket through a photographic method. Three static axial loading conditions were implemented, namely, 30, 60, and 90 N. Furthermore, subjective feedback was obtained.

    RESULTS: Tensile test results showed that both systems could safely tolerate the load applied to the prosthesis during ambulation. Clinical evaluation confirmed extremely low pistoning in both systems (i.e. less than 0.4 cm after adding 90 N traction load to the prosthesis). Subjective feedback also showed satisfaction with both systems. However, less traction at the end of the residual limb was reported while looped liner was used.

    CONCLUSION: The looped liner with hook fastener is safe and a good alternative for individuals with transtibial amputation as this system could solve some problems with the current systems. Clinical relevance The looped liner and hook fastener were shown to be good alternative suspension for people with lower limb amputation especially those who have difficulty to use and align the pin/lock systems. This system could safely tolerate centrifugal forces applied to the prosthesis during normal and fast walking.

  12. Pirouzi G, Abu Osman NA, Ali S, Davoodi Makinejad M
    Proc Inst Mech Eng H, 2017 Dec;231(12):1127-1132.
    PMID: 28985696 DOI: 10.1177/0954411917735082
    Prosthetic alignment is an essential process to rehabilitate patients with amputations. This study presents, for the first time, an invented device to read and record prosthesis alignment data. The digital device consists of seven main parts: the trigger, internal shaft, shell, sensor adjustment button, digital display, sliding shell, and tip. The alignment data were read and recorded by the user or a computer to replicate prosthesis adjustment for future use or examine the sequence of changes in alignment and its effect on the posture of the patient. Alignment data were recorded at the anterior/posterior and medial/lateral positions for five patients. Results show the high level of confidence to record alignment data and replicate adjustments. Therefore, the device helps patients readjust their prosthesis by themselves, or prosthetists to perform adjustment for patients and analyze the effects of malalignment.
  13. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
  14. Hashim NA, Abd Razak NA, Abu Osman NA, Gholizadeh H
    Proc Inst Mech Eng H, 2018 Jan;232(1):3-11.
    PMID: 29199518 DOI: 10.1177/0954411917744585
    Body-powered prostheses are known for their advantages of cost, reliability, training period, maintenance, and proprioceptive feedback. This study primarily aims to analyze the work related to the improvement of upper limb body-powered prostheses prior to 2016. A systematic review conducted via the search of the Web of Science electronic database, Google Scholar, and Google Patents identified 155 papers from 1921 to 2016. Sackett's initial rules of evidence were used to determine the levels of evidence, and only papers categorized in the design and development category and patents were analyzed. A total of 40 papers in the sixth level of "Design and Development" of an upper limb body-powered prosthesis were found. Approximately 81% were categorized under mechanical alteration. Most papers were patent-type documents (48%), with the Journal of Rehabilitation Research and Development publishing most of the articles related to the design and development of body-powered prostheses. Papers in the scope of the study were published once every 3 years in almost a century, proving that only a few studies were conducted to improve body-powered arms compared with myoelectric technology. Further research should be carried out mainly in areas that have received less attention.
  15. Ku PX, Abu Osman NA, Wan Abas WAB
    J Biomech, 2016 Dec 08;49(16):3943-3948.
    PMID: 27865478 DOI: 10.1016/j.jbiomech.2016.11.006
    Balance control plays an important role in maintaining daily activity. However, studies on postural control among middle-aged adults are scarce. This study aims (i) to examine directional control (DCL) and electromyography activity (EMG) for different stability levels, and (ii) to determine left-right asymmetry for DCL and muscle activity among sedentary middle-aged adults. Twenty healthy, middle-aged adults (10 males, 10 females; age=50.0±7.5yrs; body height: 1.61±0.10m; body mass: 70.0±14.5kg) participated in the study. EMG for left and right side of rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG) were recorded. Two-way repeated measures analysis of variance was used to assess the effect of dynamic level on DCL and EMG, whereas independent sample t-test was conducted to analyse the asymmetries of DCL and EMG for the left and right leg. When the dynamic tilt surface increased, DCL scores significantly decreased (except forward, forward-rightward, and backward-leftward direction) and only RF muscle indicated significant differences. Left-right asymmetry was found in BF and MG muscles. No significant gender difference was observed in DCL and EMG. These data demonstrated that increased dynamic tilt surface may increase the displacement of center of pressure of certain directions, and stimulate RF activity in dynamic stance among sedentary middle-aged adults. Further studies should be conducted to examine the dynamic stance and muscle activity of the lower limb in age-matched patient groups with balance abnormalities.
  16. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
  17. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014;13:134.
    PMID: 25208636 DOI: 10.1186/1475-925X-13-134
    Understanding of kinematics force applied at the elbow is important in many fields, including biomechanics, biomedical engineering and rehabilitation. This paper provides a comparison of a mathematical model of elbow joint using three different types of prosthetics for transhumeral user, and characterizes the forces required to overcome the passive mechanical of the prosthetics at the residual limb.
  18. Malaheem MS, Abd Razak NA, Abu Osman NA
    Prosthet Orthot Int, 2023 Nov 29.
    PMID: 38018968 DOI: 10.1097/PXR.0000000000000309
    Prosthetic alignment is a highly subjective process that is still based on clinical judgments. Thus, researchers have aimed their effort to quantify prosthetic alignment by providing an objective method that can assist and guide prosthetists in achieving transtibial (TT) prosthetic alignment. This systematic review aimed to examine the current literature on TT prosthetic alignment to scope the qualitative and quantitative methods designed to guide prosthetists throughout the TT prosthetic alignment process as well as evaluate the reported instruments and devices that are used to align TT prostheses and their clinical feasibility. A literature search, completed in June 2022, was performed using the following databases: Web of Science (Clarivate), SCOPUS (Elsevier), and Pub Med (Medline) with searching terms focusing on TT, prosthesis, prosthetist, prosthetic alignment, and questionnaires, resulting in 2790 studies being screened. Twenty-four studies have used quantitative methodologies, where sensor technologies were found to be the most frequently proposed technology combined with gait analysis tools and/or subjective assessments. A qualitative method that assists prosthetists throughout the alignment process was not found. In this systematic review, we presented diverse methods for guiding and assisting clinical decision-making regarding TT prosthetic alignment. However, most of these methods considered varied parameters, and there is a need for elaboration toward standardized methods, which would improve the prosthetic alignment clinical outcome.
  19. Abd Razak NA, Abu Osman NA, Gholizadeh H, Ali S
    Biomed Eng Online, 2014 Apr 23;13:49.
    PMID: 24755242 DOI: 10.1186/1475-925X-13-49
    BACKGROUND: The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user.

    METHODS: The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements.

    RESULTS: The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45°-55° of rotation or about 14 cm-16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation.

    CONCLUSION: The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links