Displaying publications 21 - 40 of 71 in total

Abstract:
Sort:
  1. S Abdul Wahid F, Cheong SK, Azman Ali R
    Hosp Med, 2002 Jun;63(6):372-3.
    PMID: 12096671 DOI: 10.12968/hosp.2002.63.6.2011
  2. Mai CW, Shu Y, Cheong SK, Chua CW
    Sheng Li Xue Bao, 2021 Apr 25;73(2):181-196.
    PMID: 33903880
    Organoids are self-organized cellular clusters in three-dimensional culture, which can be derived from a single stem cell, progenitor or cell clusters of different lineages resembling in vivo tissue architecture of an organ. In the recent years, organoids technology has contributed to the revolutionary changes in stem cell and cancer fields. In this review, we have briefly overviewed the emerging landscape of prostate organoid technology (POT) in prostate research. In addition, we have also summarized the potential application of POT in the understanding of prostate stem cell and cancer biology and the discovery of novel therapeutic strategies for prostate cancer. Lastly, we have critically discussed key challenges that lie in the current state of POT and provided a future perspective on the second-generation of POT, which should better recapitulate cellular behaviors and drug responses of prostate cancer patients.
  3. Wong CY, Cheong SK, Mok PL, Leong CF
    Pathology, 2008 Jan;40(1):52-7.
    PMID: 18038316
    AIMS: Adult human bone marrow contains a population of mesenchymal stem cells (MSC) that contributes to the regeneration of tissues such as bone, cartilage, muscle, tendon, and fat. In recent years, it has been shown that functional stem cells exist in the adult bone marrow, and they can contribute to renal remodelling or reconstitution of injured renal glomeruli, especially mesangial cells. The purpose of this study is to examine the ability of MSC isolated from human bone marrow to differentiate into mesangial cells in glomerular injured athymic mice.

    METHODS: MSC were isolated from human bone marrow mononuclear cells based on plastic adherent properties and expanded in vitro in the culture medium. Human mesenchymal stem cells (hMSC) were characterised using microscopy, immunophenotyping, and their ability to differentiate into adipocytes, chondrocytes, and osteocytes. hMSC were then injected into athymic mice, which had induced glomerulonephropathy (GN).

    RESULTS: Test mice (induced GN and infused hMSC) were shown to have anti-human CD105(+) cells present in the kidneys and were also positive to anti-human desmin, a marker for mesangial cells. Furthermore, immunofluorescence assays also demonstrated that anti-human desmin(+) cells in the glomeruli of these test mice were in the proliferation stage, being positive to anti-human Ki-67.

    CONCLUSIONS: These findings indicate that hMSC found in renal glomeruli differentiated into mesangial cells in vivo after glomerular injury occurred.

  4. Tong SR, Lee TH, Cheong SK, Lim YM
    Front Nutr, 2021;8:658634.
    PMID: 34262923 DOI: 10.3389/fnut.2021.658634
    Background: Edible Bird's Nest (EBN) is famously consumed as a food tonic for its high nutritional values with numerous recuperative and therapeutic properties. EBN is majority exploited from swiftlet houses but the differences in terms of metabolite distribution between the production site of house EBN is not yet fully understood. Therefore, this study was designed to identify the metabolite distribution and to determine the relationship pattern for the metabolite distribution of house EBNs from different locations in Malaysia. Methods: The differences of metabolite distribution in house EBN were studied by collecting the samples from 13 states in Malaysia. An extraction method of eHMG was acquired to extract the metabolites of EBN and was subjected to non-targeted metabolite profiling via liquid chromatography-mass spectrometry (LC-MS). Unsupervised multivariate analysis and Venn diagram were used to explore the relationship pattern among the house EBNs in Malaysia. The geographical distribution surrounded the swiftlet house was investigated to understand its influences on the metabolite distribution. Results: The hierarchical clustering analysis (HCA) combined with correlation coefficient revealed the differences between the house EBNs in Malaysia with four main clusters formation. The metabolites distribution among these clusters was unique with their varied combination of geographical distribution. Cluster 1 grouped EBNs from Selangor, Melaka, Negeri Sembilan, Terengganu which geographically distributed with major oil palm field in township; Cluster 2 included Perak and Sarawak with high distribution of oil palm in higher altitude; Cluster 3 included Perlis, Kelantan, Kedah, Penang from lowland of paddy field in village mostly and Cluster 4 grouped Sabah, Pahang, Johor which are majorly distributed with undeveloped hills. The metabolites which drove each cluster formation have happened in a group instead of individual key metabolite. The major metabolites that characterised Cluster 1 were fatty acids, while the rest of the clusters were peptides and secondary metabolites. Conclusion: The metabolite profiling conducted in this study was able to discriminate the Malaysian house EBNs based on metabolites distribution. The factor that most inferences the differences of house EBNs were the geographical distribution, in which geographical distribution affects the distribution of insect and the diet of swiftlet.
  5. Kiew LV, Cheong SK, Sidik K, Chung LY
    Int J Pharm, 2010 May 31;391(1-2):212-20.
    PMID: 20214970 DOI: 10.1016/j.ijpharm.2010.03.010
    To enhance the stability of the anticancer drug gemcitabine (2'-deoxy-2',2'-difluorocytidine), it was conjugated to poly-l-glutamic acid (PG-H) via a carbodiimide reaction. The synthesised poly-l-glutamic acid-gemcitabine (PG-G) was purified and characterised by using SDS-PAGE to estimate its molecular weight, HPLC to determine its purity and degree of drug loading, and NMR to elucidate the structure. In vitro aqueous hydrolytic studies showed that the gemcitabine release from the polymeric drug conjugate was pH dependent, and that the conjugation to PG-H improved its stability in human plasma. The release of the bound gemcitabine from PG-G in plasma was mediated by a hydrolytic process. It began with a lag phase, followed by linear release between 12 and 48h, and reached equilibrium at 72h with 51% of the gemcitabine released. In vitro cytotoxicity studies using MCF-7 and MDA-MB-231 human mammary cancer cells, as well as human dermal fibroblasts (HDF), showed that PG-G displayed a lower dose dependent cytotoxic effect with respect to the parent drug gemcitabine. On the other hand, in 4T1 mouse mammary tumour cells, PG-G and gemcitabine showed similar toxicities. Gemcitabine was more than likely released hydrolytically from PG-G and taken up by MCF-7, MDA-MB-231 and HDF, whereas both released gemcitabine and PG-G were taken up by 4T1 to mediate the observed cytotoxicities. The improved stability and extended sustained release profile may render PG-G a potential anticancer prodrug.
  6. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK
    Microsc Microanal, 2012 Jun;18(3):462-9.
    PMID: 22640960 DOI: 10.1017/S1431927612000177
    Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
  7. Tai L, Saffery NS, Chin SP, Cheong SK
    Regen Med, 2023 Nov;18(11):839-856.
    PMID: 37671699 DOI: 10.2217/rme-2023-0085
    Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
  8. Kwa EK, Cheong SK, Ong LK, Lee PF
    Biomed Tech (Berl), 2024 Apr 25;69(2):141-150.
    PMID: 37856824 DOI: 10.1515/bmt-2023-0410
    OBJECTIVES: Numerous studies indicate that deep breathing (DB) enhances wellbeing. Multiple deep breathing methods exist, but few employ audio to reach similar results. This study developed audio-guided DB and evaluated its immediate impacts on healthy population via self-created auditory Go/No-Go task, tidal volume changes, and psychological measures.

    METHODS: Audio-guided DB with natural sounds to guide the DB was developed. Meanwhile, audio-based Go/No-Go paradigm with Arduino was built to measure the attention level. Thirty-two healthy young adults (n=32) were recruited. Psychological questionnaires (Rosenberg's Self-Esteem Scale (RSES), Cognitive and Affective Mindfulness Scale-Revised (CAMS-R), Perceived Stress Scale (PSS)), objective measurements with tidal volume and attention level with auditory Go/No-Go task were conducted before and after 5 min of DB.

    RESULTS: Results showed a significant increment in tidal volume and task reaction time from baseline (p=0.003 and p=0.033, respectively). Significant correlations were acquired between (1) task accuracy with commission error (r=-0.905), (2) CAMS-R with task accuracy (r=-0.425), commission error (r=0.53), omission error (r=0.395) and PSS (r=-0.477), and (3) RSES with task reaction time (r=-0.47), task accuracy (r=-0.362), PSS (r=-0.552) and CAMS-R (r=0.591).

    CONCLUSIONS: This pilot study suggests a link between it and young adults' wellbeing and proposes auditory Go/No-Go task for assessing attention across various groups while maintaining physical and mental wellness.

  9. Chin SP, Saffery NS, Then KY, Cheong SK
    In Vitro Cell Dev Biol Anim, 2024 Mar;60(3):307-319.
    PMID: 38421574 DOI: 10.1007/s11626-024-00852-z
    Human umbilical cord-mesenchymal stem cells (hUC-MSCs) have been widely investigated as a new therapeutic agent to treat injuries and inflammatory-mediated and autoimmune diseases. Previous studies have reported on the safety of low-dose infusion of hUC-MSCs, but information on the cell behaviour at higher doses and frequency of injection of the cells remains uncertain. The aim of the present study was to demonstrate the safety and efficacy of hUC-MSCs by Cytopeutics® (Selangor, Malaysia) from low to an extremely high dose in different monitoring periods in healthy BALB/c mice as well as assessing the tumorigenicity of the cells in B-NDG SCID immunocompromised mice. Umbilical cord from two healthy human newborns was obtained and the isolation of the hUC-MSCs was performed based on previous established method. Assessment of the cells at different doses of single or multiple administrations was performed on healthy BALB/c mice in dose range finding, sub-acute (7 d and 28 d) and sub-chronic periods (90 d). Tumorigenicity potential of Cytopeutics® hUC-MSCs was also evaluated on B-NDG immunocompromised mice for 26 wk. Single or multiple administrations of Cytopeutics® hUC-MSCs up to 40 × 106 cells per kilogramme of body weight (kg BW) were found to have no adverse effect in terms of clinical symptoms, haematology and other laboratory parameters, and histology examination in healthy BALB/c mice. hUC-MSCs were also found to reduce pro-inflammatory cytokines (IL-6 and TNF-α) in a dose-dependent manner. No sign of tumor formation was observed in B-NDG mice in the 26-wk tumorigenicity assessment. Single or multiple administration of allogenic Cytopeutics® hUC-MSCs was safe even at very high doses, is non-tumorigenic and did not cause adverse effects in mice throughout the evaluation periods. In addition, Cytopeutics® hUC-MSCs exhibited immunomodulatory effect in a dose-dependent manner.
  10. Teoh HK, Chong PP, Abdullah M, Sekawi Z, Tan GC, Leong CF, et al.
    Leuk. Res., 2016 Jan;40:44-53.
    PMID: 26626206 DOI: 10.1016/j.leukres.2015.10.004
    Studies demonstrated that mesenchymal stromal cells (MSC) from bone marrow stroma produced high concentration of interleukin-6 (IL-6) that promoted multiple myeloma cell growth. In view of the failure of IL-6 monoclonal antibody therapy to demonstrate substantial clinical responses in early clinical trials, more effective methods are needed in order to disrupt the favourable microenvironment provided by the bone marrow stroma. In this study, we evaluated the short interfering RNA (siRNA)-mediated silencing of IL-6 in MSC and the efficacy of these genetically modified MSC, with IL-6 suppression, on inhibition of U266 multiple myeloma cell growth. IL-6 mRNA and protein were significantly suppressed by 72h post IL-6 siRNA transfection without affecting the biological properties of MSC. Here we show significant inhibition of cell growth and IL-6 production in U266 cells co-cultured with MSC transfected with IL-6 siRNA when compared to U266 cells co-cultured with control MSC. We also show that the tumour volume and mitotic index of tumours in nude mice co-injected with U266 and MSC transfected with IL-6 siRNA were significantly reduced compared to tumours of mice co-injected with control MSC. Our results suggest potential use of RNA interference mediated therapy for multiple myeloma.
  11. Thiagarajah K, Wong CY, Vijayan VV, Ooi GC, Ng MT, Cheong SK, et al.
    Transfusion, 2015 May;55(5):1028-32.
    PMID: 25472857 DOI: 10.1111/trf.12950
    Processed umbilical cord blood (UCB) must be stored at cryogenic temperature at all times to maintain the quality and viability of the cells. However, a challenge is presented in the form of moving a large number of cryopreserved UCB samples to a new location. In this report, we share our experience on relocating more than 100,000 units of cryopreserved UCB samples stored in 12 liquid nitrogen freezers (LNFs) to our new laboratory.
  12. Huang CJ, Nguyen PN, Choo KB, Sugii S, Wee K, Cheong SK, et al.
    Int J Med Sci, 2014;11(8):824-33.
    PMID: 24936146 DOI: 10.7150/ijms.8358
    A miRNA precursor generally gives rise to one major miRNA species derived from the 5' arm, and are called miRNA-5p. However, more recent studies have shown co-expression of miRNA-5p and -3p, albeit in different concentrations, in cancer cells targeting different sets of transcripts. Co-expression and regulation of the -5p and -3p miRNA species in stem cells, particularly in the reprogramming process, have not been studied.
  13. Chin SP, Poey AC, Wong CY, Chang SK, Teh W, Mohr TJ, et al.
    Cytotherapy, 2010;12(1):31-7.
    PMID: 19878080 DOI: 10.3109/14653240903313966
    Bone marrow (BM) mesenchymal stromal cells (MSC) represent a novel therapy for severe heart failure with extensive myocardial scarring, especially when performed concurrently with conventional revascularization. However, stem cells are difficult to transport in culture media without risk of contamination, infection and reduced viability. We tested the feasibility and safety of off-site MSC culture and expansion with freeze-controlled cryopreservation and subsequent rapid thawing of cells immediately prior to implantation to treat severe dilated ischemic cardiomyopathy.
  14. Tan YF, Sim GC, Habsah A, Leong CF, Cheong SK
    Malays J Pathol, 2008 Dec;30(2):73-9.
    PMID: 19291915 MyJurnal
    Dendritic cells (DC) are professional antigen presenting cells of the immune system. Through the use of DC vaccines (DC after exposure to tumour antigens), cryopreserved in single-use aliquots, an attractive and novel immunotherapeutic strategy is available as an option for treatment. In this paper we describe an in vitro attempt to scale-up production of clinical-grade DC vaccines from leukemic cells. Blast cells of two relapsed AML patients were harvested for DC generation in serum-free culture medium containing clinical-grade cytokines GM-CSF, IL-4 and TNF-alpha. Cells from patient 1 were cultured in a bag and those from patient 2 were cultured in a flask. The numbers of seeding cells were 2.24 x 10(8) and 0.8 x 10(8), respectively. DC yields were 10 x 10(6) and 29.8 x 10(6) cells, giving a conversion rate of 4.7% and 37%, respectively. These DC vaccines were then cryopreserved in approximately one million cells per vial with 20% fresh frozen group AB plasma and 10% DMSO. At 12 months and 21 months post cryopreservation, these DC vaccines were thawed, and their sterility, viability, phenotype and functionality were studied. DC vaccines remained sterile up to 21 months of storage. Viability of the cryopreserved DC in the culture bag and flask was found to be 50% and 70% at 12 months post cryopreservation respectively; and 48% and 67% at 21 months post cryopreservation respectively. These DC vaccines exhibited mature DC surface phenotypic markers of CD83, CD86 and HLA-DR, and negative for haemopoietic markers. Mixed lymphocyte reaction (MLR) study showed functional DC vaccines. These experiments demonstrated that it is possible to produce clinical-grade DC vaccines in vitro from blast cells of leukemic patients, which could be cryopreserved up to 21 months for use if repeated vaccinations are required in the course of therapy.
  15. Ainoon O, Boo NY, Yu YH, Cheong SK, Hamidah HN, Lim JH
    Malays J Pathol, 2004 Dec;26(2):89-98.
    PMID: 16329560
    We performed DNA analysis on cord blood samples of 128 Chinese male neonates diagnosed as G6PD deficiency in Hospital Universiti Kebangsaan Malaysia by a combination PCR-restriction enzyme digest technique, Single Stranded Conformation Polymorphism analysis and DNA sequencing. We found 10 different G6PD-deficient mutations exist. The two commonest alleles were G6PD Canton 1376 G>T (42.3%) and Kaiping 1388 G>A (39.4%) followed by G6PD Gaohe 592 G>A (7.0%), Chinese-5 1024 C>T, Nankang 517 T>C (1.5%), Mahidol 487 G>A (1.6%), Chatham 1003 G>T (0.8%), Union 1360 C>T (0.8%), Viangchan 871 G>A (0.8%) and Quing Yang 392 G>T (0.8%). Sixty eight percent (88/125) neonates in this study had neonatal jaundice and 29.7% developed hyperbilirubinemia >250 micromol/l. The incidence of hyperbilirubinemia >250 micromol/l was higher in G6PD Kaiping (43.8%) than G6PD Canton (22%) (p< 0.05). There was no significant difference in the incidence of neonatal jaundice, mean serum bilirubin, mean age for peak serum bilirubin, percentage of babies requiring phototherapy and mean duration of phototherapy between the two major variants. None of the 88 neonates required exchange transfusion. In conclusion we have completely characterized the molecular defects of a group of Chinese G6PD deficiency in Malaysia. The mutation distribution reflects the original genetic pool and limited ethnic admixture with indigenous Malays.
  16. Lim KL, Teoh HK, Choong PF, Teh HX, Cheong SK, Kamarul T
    Expert Opin Biol Ther, 2016 07;16(7):941-51.
    PMID: 27070264 DOI: 10.1517/14712598.2016.1174211
    INTRODUCTION: Cancer is a disease with genetic and epigenetic origins, and the possible effects of reprogramming cancer cells using the defined sets of transcription factors remain largely uninvestigated. In the handful of publications available so far, findings have shown that reprogramming cancer cells changed the characteristics of the cells to differ from the parental cancer cells. These findings indicated the possibility of utilizing reprogramming technology to create a disease model in the laboratory to be used in studying the molecular pathogenesis or for drug screening of a particular cancer model.

    AREAS COVERED: Despite numerous methods employed in generating induced pluripotent stem cells (iPSCs) from cancer cells only a few studies have successfully reprogrammed malignant human cells. In this review we will provide an overview on i) methods to reprogram cancer cells, ii) characterization of the reprogrammed cancer cells, and iii) the differential effects of reprogramming on malignancy, epigenetics and response of the cancer cells to chemotherapeutic agents.

    EXPERT OPINION: Continued technical progress in cancer cell reprogramming technology will be instrumental for more refined in vitro disease models and ultimately for the development of directed and personalized therapy for cancer patients in the future.

  17. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
  18. Chiew MY, Boo NY, Voon K, Cheong SK, Leong PP
    Leuk Lymphoma, 2017 01;58(1):162-170.
    PMID: 27185517
    Acute monocytic leukemia (AML-M5), a subtype of acute myeloid leukemia (AML), affects mostly young children and has poor prognosis. The mechanisms of treatment failure of AML-M5 are still unclear. In this study, we generated iPSC from THP-1 cells from a patient with AML-M5, using retroviruses encoding the pluripotency-associated genes (OCT3/4, SOX2, KLF4 and c-MYC). These AML-M5-derived iPSC showed features similar with those of human embryonic stem cells in terms of the morphology, gene expression, protein/antigen expression and differentiation capability. Parental-specific markers were down-regulated in these AML-M5-derived iPSCs. Expression of MLL-AF9 fusion gene (previously identified to be associated with pathogenesis of AML-M5) was observed in all iPSC clones as well as parental cells. We conclude that AML-M5-specific iPSC clones have been successfully developed. This disease model may provide a novel approach for future study of pathogenesis and therapeutic intervention of AML-M5.
  19. Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY, Cheong SK
    Stem Cells Int, 2020;2020:8877003.
    PMID: 33061992 DOI: 10.1155/2020/8877003
    Background: Mesenchymal stem cells (MSCs) express growth factors and other cytokines that stimulate repair and control the immune response. MSCs are also immunoprivileged with low risk of rejection. Umbilical cord-derived MSCs (UCMSCs) are particularly attractive as an off-the-shelf allogeneic treatment in emergency medical conditions. We aim to determine the safety and efficacy of intravenous allogeneic infusion of UCMSCs (CLV-100) by Cytopeutics® (Selangor, Malaysia) in healthy volunteers, and to determine the effective dose at which an immunomodulatory effect is observed. Methodology. Umbilical cord samples were collected after delivery of full-term, healthy babies with written consent from both parents. All 3 generations (newborn, parents, and grandparents) were screened for genetic mutations, infections, cancers, and other inherited diseases. Samples were transferred to a certified Good Manufacturing Practice laboratory for processing. Subjects were infused with either low dose (LD, 65 million cells) or high dose (HD, 130 million cells) of CLV-100 and followed up for 6 months. We measured cytokines using ELISA including anti-inflammatory cytokines interleukin 1 receptor antagonist (IL-1RA), interleukin 10 (IL-10), pro-/anti-inflammatory cytokine interleukin 6 (IL-6), and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-α).

    Results: 11 healthy subjects (LD, n = 5; HD, n = 6; mean age of 55 ± 13 years) were recruited. All subjects tolerated the CLV-100 infusion well with no adverse reaction throughout the study especially in vital parameters and routine blood tests. At 6 months, the HD group had significantly higher levels of anti-inflammatory markers IL1-RA (705 ± 160 vs. 306 ± 36 pg/mL; p = 0.02) and IL-10 (321 ± 27 vs. 251 ± 28 pg/mL; p = 0.02); and lower levels of proinflammatory marker TNF-α (74 ± 23 vs. 115 ± 15 pg/mL; p = 0.04) compared to LD group.

    Conclusion: Allogeneic UCMSCs CLV-100 infusion is safe and well-tolerated in low and high doses. Anti-inflammatory effect is observed with a high-dose infusion.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links