Displaying publications 21 - 40 of 72 in total

Abstract:
Sort:
  1. Ranjani V, Janeček S, Chai KP, Shahir S, Abdul Rahman RN, Chan KG, et al.
    Sci Rep, 2014 Jul 28;4:5850.
    PMID: 25069018 DOI: 10.1038/srep05850
    The α-amylases from Anoxybacillus species (ASKA and ADTA), Bacillus aquimaris (BaqA) and Geobacillus thermoleovorans (GTA, Pizzo and GtamyII) were proposed as a novel group of the α-amylase family GH13. An ASKA yielding a high percentage of maltose upon its reaction on starch was chosen as a model to study the residues responsible for the biochemical properties. Four residues from conserved sequence regions (CSRs) were thus selected, and the mutants F113V (CSR-I), Y187F and L189I (CSR-II) and A161D (CSR-V) were characterised. Few changes in the optimum reaction temperature and pH were observed for all mutants. Whereas the Y187F (t1/2 43 h) and L189I (t1/2 36 h) mutants had a lower thermostability at 65°C than the native ASKA (t1/2 48 h), the mutants F113V and A161D exhibited an improved t1/2 of 51 h and 53 h, respectively. Among the mutants, only the A161D had a specific activity, k(cat) and k(cat)/K(m) higher (1.23-, 1.17- and 2.88-times, respectively) than the values determined for the ASKA. The replacement of the Ala-161 in the CSR-V with an aspartic acid also caused a significant reduction in the ratio of maltose formed. This finding suggests the Ala-161 may contribute to the high maltose production of the ASKA.
  2. Kahar UM, Chan KG, Salleh MM, Hii SM, Goh KM
    Int J Mol Sci, 2013;14(6):11302-18.
    PMID: 23759984 DOI: 10.3390/ijms140611302
    An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK) was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD)-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC) domains. In addition, the existence of a S-layer homology (SLH) domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.
  3. Goh PH, Illias RM, Goh KM
    Int J Mol Sci, 2012;13(5):5307-23.
    PMID: 22754298 DOI: 10.3390/ijms13055307
    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.
  4. Chai YY, Kahar UM, Md Salleh M, Md Illias R, Goh KM
    Environ Technol, 2012 Jun;33(10-12):1231-8.
    PMID: 22856294
    Two thermophilic bacteria (SK3-4 and DT3-1) were isolated from the Sungai Klah (SK) and Dusun Tua (DT) hot springs in Malaysia. The cells from both strains were rod-shaped, stained Gram positive and formed endospores. The optimal growth of both strains was observed at 55 degrees C and pH 7. Strain DT3-1 exhibited a higher tolerance to chloramphenicol (100 microg ml(-1)) but showed a lower tolerance to sodium chloride (2%, w/v) compared to strain SK3-4. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains belong to the genus Anoxybacillus. High concentrations of 15:0 iso in the fatty acid profiles support the conclusion that both strains belong to the genus Anoxybacillus and exhibit unique fatty acid compositions and percentages compared to other Anoxybacillus species. The DNA G + C contents were 42.0 mol% and 41.8 mol% for strains SK3-4 and DT3-1, respectively. Strains SK3-4 and DT3-1 were able to degrade pullulan and to produce maltotriose and glucose, respectively, as their main end products. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequences, and the DNA G + C content, we propose that strains SK3-4 and DT3-1 are new pullulan-degrading Anoxybacillus strains.
  5. Yaakop AS, Chan KG, Gan HM, Goh KM
    Genome Announc, 2015;3(5).
    PMID: 26494670 DOI: 10.1128/genomeA.01224-15
    Jeotgalibacillus alimentarius JY-13(T) (=KCCM 80002(T) = JCM 10872(T)) is a moderate halophile. In 2001, this was the first strain of the newly proposed Jeotgalibacillus genus. The draft genome of J. alimentarius was found to consist of 32 contigs (N50, 315,125 bp) with a total size of 3,364,745 bp. This genome information will be helpful for studies on pigmentation as well as applications for this bacterium.
  6. Belduz AO, Canakci S, Chan KG, Kahar UM, Chan CS, Yaakop AS, et al.
    Stand Genomic Sci, 2015;10:70.
    PMID: 26413199 DOI: 10.1186/s40793-015-0065-2
    Species of Anoxybacillus are thermophiles and, therefore, their enzymes are suitable for many biotechnological applications. Anoxybacillus ayderensis AB04(T) (= NCIMB 13972(T) = NCCB 100050(T)) was isolated from the Ayder hot spring in Rize, Turkey, and is one of the earliest described Anoxybacillus type strains. The present work reports the cellular features of A. ayderensis AB04(T), together with a high-quality draft genome sequence and its annotation. The genome is 2,832,347 bp long (74 contigs) and contains 2,895 protein-coding sequences and 103 RNA genes including 14 rRNAs, 88 tRNAs, and 1 tmRNA. Based on the genome annotation of strain AB04(T), we identified genes encoding various glycoside hydrolases that are important for carbohydrate-related industries, which we compared with those of other, sequenced Anoxybacillus spp. Insights into under-explored industrially applicable enzymes and the possible applications of strain AB04(T) were also described.
  7. Poli A, Nicolaus B, Chan KG, Kahar UM, Chan CS, Goh KM
    Genome Announc, 2015;3(3).
    PMID: 25999577 DOI: 10.1128/genomeA.00490-15
    Anoxybacillus thermarum AF/04(T) was isolated from the Euganean hot springs in Abano Terme, Italy. The present work reports a high-quality draft genome sequence of strain AF/04(T). This work also provides useful insights into glycoside hydrolases, glycoside transferases, and sugar transporters that may be involved in cellular carbohydrate metabolism.
  8. Yaakop AS, Chan KG, Gan HM, Goh KM
    Mar Genomics, 2015 Oct;23:59-60.
    PMID: 25999308 DOI: 10.1016/j.margen.2015.05.004
    Jeotgalibacillus campisalis SF-57(T) (=KCCM 41644(T), JCM 11810(T)) is a moderate halophilic bacterium isolated from a Korean marine saltern. In this study, we describe the high-quality draft genome of strain SF-57(T), which was assembled into 24 contigs containing 3,650,490bp with a G+C content of 41.06%. Availability of the genome sequence of J. campisalis SF-57(T) will contribute to a better understanding of the genus Jeotgalibacillus.
  9. Yaakop AS, Chan CS, Kahar UM, Ee R, Chan KG, Goh KM
    Genome Announc, 2015;3(3).
    PMID: 25977433 DOI: 10.1128/genomeA.00457-15
    Erythrobacter vulgaris strain O1, a moderate halophile, was isolated from a beach in Johor, Malaysia. Here, we present the draft genome and suggest potential applications of this bacterium.
  10. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
  11. Yaakop AS, Chan KG, Ee R, Kahar UM, Kon WC, Goh KM
    Int J Syst Evol Microbiol, 2015 Jul;65(7):2215-2221.
    PMID: 25862385 DOI: 10.1099/ijs.0.000242
    A Gram-stain-positive, endospore-forming, rod-shaped bacterial strain, designated D5(T), was isolated from seawater collected from a sandy beach in a southern state of Malaysia and subjected to a polyphasic taxonomic study. Sequence analysis of the 16S rRNA gene demonstrated that this isolate belongs to the genus Jeotgalibacillus, with 99.87% similarity to Jeotgalibacillus alimentarius JCM 10872(T). DNA-DNA hybridization of strain D5(T) with J. alimentarius JCM 10872(T) demonstrated 26.3% relatedness. The peptidoglycan type was A1α linked directly to L-lysine as the diamino acid. The predominant quinones identified in strain D5(T) were menaquinones MK-7 and MK-8.The major fatty acids were iso-C15:0 and anteiso-C15:0. The G+C content of its DNA was 43.0 mol%. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and sulfoquinovosyl diacylglycerol, as well as two unknown phospholipids and three unknown lipids. The phenotypic, chemotaxonomic and genotypic data indicated that strain D5(T) represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus malaysiensis sp. nov. is proposed (type strain D5(T) = DSM 28777(T) = KCTC33550(T)). An emended description of the genus Jeotgalibacillus is also provided.
  12. Chan CS, Chan KG, Tay YL, Chua YH, Goh KM
    Front Microbiol, 2015;6:177.
    PMID: 25798135 DOI: 10.3389/fmicb.2015.00177
    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.
  13. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
  14. Chai YY, Rahman RN, Illias RM, Goh KM
    J Ind Microbiol Biotechnol, 2012 May;39(5):731-41.
    PMID: 22246222 DOI: 10.1007/s10295-011-1074-9
    Two genes that encode α-amylases from two Anoxybacillus species were cloned and expressed in Escherichia coli. The genes are 1,518 bp long and encode 506 amino acids. Both sequences are 98% similar but are distinct from other well-known α-amylases. Both of the recombinant enzymes, ASKA and ADTA, were purified using an α-CD-Sepharose column. They exhibited an optimum activity at 60°C and pH 8. Both amylases were stable at pH 6-10. At 60°C in the absence of Ca²⁺, negligible reduction in activity for up to 48 h was observed. The activity half-life at 65°C was 48 and 3 h for ASKA and ADTA, respectively. In the presence of Ca²⁺ ions, both amylases were highly stable for at least 48 h and had less than a 10% decrease in activity at 70°C. Both enzymes exhibited similar end-product profiles, and the predominant yield was maltose (69%) from starch hydrolysis. To the best of our knowledge, most α-amylases that produce high levels of maltose are active at an acidic to neutral pH. This is the first report of two thermostable, alkalitolerant recombinant α-amylases from Anoxybacillus that produce high levels of maltose and have an atypical protein sequence compared with known α-amylases.
  15. Liew KJ, Teo SC, Shamsir MS, Goh KM
    Microbiol Resour Announc, 2019 Nov 14;8(46).
    PMID: 31727717 DOI: 10.1128/MRA.01238-19
    Longimonas halophila and Longibacter salinarum are type strains of underexplored genera affiliated with Salisaetaceae Herein, we report the draft genome sequences of two strains of these bacteria, L. halophila KCTC 42399 and L. salinarum KCTC 52045, with the intent of broadening knowledge of this family. Genome annotation and gene mining revealed that both bacteria exhibit amylolytic abilities.
  16. Lim YL, Chan KG, Ee R, Belduz AO, Canakci S, Kahar UM, et al.
    J Biotechnol, 2015 Oct 20;212:65-6.
    PMID: 26297905 DOI: 10.1016/j.jbiotec.2015.08.007
    Anoxybacillus gonensis type strain G2(T) (=NCIMB 13,933(T) =NCCB 100040(T)) has been isolated from the Gönen hot springs in Turkey. This strain produces a number of well-studied, biotechnologically important enzymes, including xylose isomerase, carboxylesterase, and fructose-1,6-bisphosphate aldolase. In addition, this strain is an excellent candidate for the bioremediation of areas with heavy metal pollution. Here, we present a high-quality, annotated, complete genome of A. gonensis G2(T). Furthermore, this report provides insights into several novel enzymes of strain G2(T) and their potential industrial applications.
  17. Bhat R, Goh KM
    Food Chem, 2017 Jan 15;215:470-6.
    PMID: 27542500 DOI: 10.1016/j.foodchem.2016.07.160
    Hand-pressed strawberry juice samples were subjected to sonication treatments (0, 15 and 30min at 20°C, 25kHz frequency). Physicochemical properties (°Brix, pH, water activity, viscosity, titratable acidity, cloud assessment and turbidity), antioxidant compounds and activity (total phenolics, ascorbic acid, anthocyanins, free radical scavenging activity), polyphenoloxidase enzyme activity, browning degree and microbial load were evaluated. Results showed non-significant changes for °Brix, pH, water activity, titratable acidity and colour parameters in sonicated samples compared to control (0min). Sonication treatments resulted in reduced viscosity and increased cloudiness and turbidity. Overall, treatment for 30min showed significant enhancement in bioactive compounds under study. Besides, sonication treatment imparted non-significant changes in polyphenoloxidase activity and in browning degree. However, sonication was incompetent in reducing microbial load. Results generated from this study were encouraging and this is expected to provide platform for future commercial applications on a pilot scale.
  18. Liew KJ, Lim L, Woo HY, Chan KG, Shamsir MS, Goh KM
    Int J Biol Macromol, 2018 Aug;115:1094-1102.
    PMID: 29723622 DOI: 10.1016/j.ijbiomac.2018.04.156
    Beta-glucosidase (BGL) is an important industrial enzyme for food, waste and biofuel processing. Jeotgalibacillus is an understudied halophilic genus, and no beta-glucosidase from this genus has been reported. A novel beta-glucosidase gene (1344 bp) from J. malaysiensis DSM 28777T was cloned and expressed in E. coli. The recombinant protein, referred to as BglD5, consists of a total 447 amino acids. BglD5 purified using a Ni-NTA column has an apparent molecular mass of 52 kDa. It achieved the highest activity at pH 7 and 65 °C. The activity and stability were increased when CaCl2 was supplemented to the enzyme. The enzyme efficiently hydrolyzed salicin and (1 → 4)-beta-glycosidic linkages such as in cellobiose, cellotriose, cellotetraose, cellopentose, and cellohexanose. Similar to many BGLs, BglD5 was not active towards polysaccharides such as Avicel, carboxymethyl cellulose, Sigmacell cellulose 101, alpha-cellulose and xylan. When BglD5 blended with Cellic® Ctec2, the total sugars saccharified from oil palm empty fruit bunches (OPEFB) was enhanced by 4.5%. Based on sequence signatures and tree analyses, BglD5 belongs to the Glycoside Hydrolase family 1. This enzyme is a novel beta-glucosidase attributable to its relatively low sequence similarity with currently known beta-glucosidases, where the closest characterized enzyme is the DT-Bgl from Anoxybacillus sp. DT3-1.
  19. Kahar UM, Chan KG, Sani MH, Mohd Noh NI, Goh KM
    Int J Biol Macromol, 2017 Nov;104(Pt A):322-332.
    PMID: 28610926 DOI: 10.1016/j.ijbiomac.2017.06.054
    Type I pullulanase from Anoxybacillus sp. SK3-4 (PulASK) is an unusual debranching enzyme that specifically hydrolyzes starch α-1,6 linkages at long branches producing oligosaccharides (≥G8), but is nonreactive against short branches; thus, incapable of producing reducing sugars (G1-G7). We report on the effects of both single and co-immobilization of PulASK on product specificity. PulASK was purified and immobilized through covalent attachment to three epoxides (ReliZyme EP403/M, Immobead IB-150P, and Immobead IB-150A) and an amino-epoxide (ReliZyme HFA403/M) activated supports. Following immobilization, all PulASK derivatives were active on both short and long branches in starch producing reducing sugars (predominantly maltotriose) and oligosaccharides (≥G8), respectively, a feature that is absent in the free enzyme. This study also demonstrated that co-immobilization of PulASK and α-amylase from Anoxybacillus sp. SK3-4 (TASKA) on ReliZyme HFA403/M significantly changed the product specificity compared to the free enzymes alone or individually immobilized enzymes. In conclusion, individual or co-immobilization caused changes in the product specificity, presumably due to changes in the enzyme binding pocket caused by the influence of carrier surface properties (hydrophobic or hydrophilic) and the lengths of the spacer arms.
  20. Chan CS, Chan KG, Ee R, Hong KW, Urbieta MS, Donati ER, et al.
    Front Microbiol, 2017;8:1252.
    PMID: 28729863 DOI: 10.3389/fmicb.2017.01252
    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links