Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, et al.
    J Endod, 2010 Sep;36(9):1504-15.
    PMID: 20728718 DOI: 10.1016/j.joen.2010.05.006
    Lately, several new stem cell sources and their effective isolation have been reported that claim to have potential for therapeutic applications. However, it is not yet clear which type of stem cell sources are most potent and best for targeted therapy. Lack of understanding of nature of these cells and their lineage-specific propensity might hinder their full potential. Therefore, understanding the gene expression profile that indicates their lineage-specific proclivity is fundamental to the development of successful cell-based therapies.
  2. Lim GS, Wey MC, Azami NH, Noor NSM, Lau MN, Haque N, et al.
    Curr Stem Cell Res Ther, 2021;16(5):577-588.
    PMID: 33198618 DOI: 10.2174/1574888X15999201116162256
    The concept of regenerative endodontics wherein one can replace damaged pulp structures and recuperate the functionality in erstwhile necrotic and infected root canal systems has been a cutting-edge technology. Though the notion started as early as the 1960s, even before the discovery of stem cells and regenerative medicine, it was in the 2000s that this procedure gained momentum. Ever since then, researchers continue to discover its essential benefit to immature teeth and its ability to overcome the caveats of endodontic therapy, which is commonly known as root canal treatment. Further, through this therapy, one can redevelop root even in immature teeth with necrotic pulps, which overall helps in maintaining skeletal and dental development. Past literature indicates that regenerative endodontic procedures seem to be successful, especially when compared with other conventional techniques such as Mineral Trioxide Aggregate apexification. Besides, many clinicians have begun to apply regenerative endodontic procedures to mature teeth in adult patients, with several clinical case reports that have shown complete resolution of signs and symptoms of pulp necrosis. Generally, the three most desirable outcomes anticipated by clinicians from this procedure include resolution of clinical signs and symptoms, root maturation and redevelopment of the neurogenesis process. Despite this, whether these objectives and true regeneration of the pulp/dentin complex are achieved is still a question mark. Following the discovery that regenerative endodontics indeed is a stem cell-based treatment, addressing the fundamental issue surrounding stem cells might assist in achieving all identified clinical outcomes while favoring tissue formation that closely resembles the pulp-dentin complex.
  3. Govindasamy V, Rajendran A, Lee ZX, Ooi GC, Then KY, Then KL, et al.
    Cell Biol Int, 2021 Oct;45(10):1999-2016.
    PMID: 34245637 DOI: 10.1002/cbin.11652
    Ageing and age-related diseases share some basic origin that largely converges on inflammation. Precisely, it boils down to a common pathway characterised by the appearance of a fair amount of proinflammatory cytokines known as inflammageing. Among the proposed treatment for antiageing, MSCs gained attention in recent years. Since mesenchymal stem cells (MSCs) can differentiate itself into a myriad of terminal cells, previously it was believed that these cells migrate to the site of injury and perform their therapeutic effect. However, with the more recent discovery of huge amounts of paracrine factors secreted by MSCs, it is now widely accepted that these cells do not engraft upon transplantation but rather unveil their benefits through excretion of bioactive molecules namely those involved in inflammatory and immunomodulatory activities. Conversely, the true function of these paracrine changes has not been thoroughly investigated all these years. Hence, this review will describe in detail on ways MSCs may capitalize its paracrine properties in modulating antiageing process. Through a comprehensive literature search various elements in the antiageing process, we aim to provide a novel treatment perspective of MSCs in antiageing related clinical conditions.
  4. Gnanasegaran N, Govindasamy V, Simon C, Gan QF, Vincent-Chong VK, Mani V, et al.
    Eur J Clin Invest, 2017 Mar 30.
    PMID: 28369799 DOI: 10.1111/eci.12753
    BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic (DA-ergic) neurons in the substantia nigra (SN) and represented as a huge threat to the geriatric population. Cell replacement therapies (CRTs) have been proposed as a promising strategy to slow down or replace neuronal loss. Among the widely available cell sources, dental pulp stem cells (DPSCs) portray as an attractive source primarily due to their neural crest origin, ease of tissue procurement and less ethical hurdles.

    MATERIALS AND METHODS: We first demonstrated the in vitro differentiation ability of DPSCs towards DA-ergic-like cells before evaluating their neuro-protection/neuro-restoration capacities in MPTP-induced mice. Transplantation via intrathecal was performed with behavioural assessments being evaluated every fortnight. Subsequent analysis investigating their immuno-modulatory behaviour was conducted using neuronal and microglial cell lines.

    RESULTS: It was apparent that the behavioural parameters began to improve corresponding to tyrosine hydroxylase (TH), dopamine transporter (DAT) and dopamine decarboxylase (AADC) immunostaining in SN and striatum as early as 8-week post-transplantation (P < 0·05). About 60% restoration of DA-ergic neurons was observed at SN in MPTP-treated mice after 12-week post-transplantation. Similarly, their ability to reduce toxic effects of MPTP (DNA damages, reactive oxygen species and nitric oxide release) and regulate cytokine levels was distinctly noted (P < 0·05) upon exposure in in vitro model.

    CONCLUSIONS: Our results suggest that DPSCs may provide a therapeutic benefit in the old-aged PD mice model and may be explored in stem cell-based CRTs especially in geriatric population as an attempt towards 'personalized medicine'.

  5. Govindasamy V, Ronald VS, Abdullah AN, Nathan KR, Ab Aziz ZA, Abdullah M, et al.
    J Dent Res, 2011 May;90(5):646-52.
    PMID: 21335539 DOI: 10.1177/0022034510396879
    The post-natal dental pulp tissue contains a population of multipotent mesenchymal progenitor cells known as dental pulp stromal/stem cells (DPSCs), with high proliferative potential for self-renewal. In this investigation, we explored the potential of DPSCs to differentiate into pancreatic cell lineage resembling islet-like cell aggregates (ICAs). We isolated, propagated, and characterized DPSCs and demonstrated that these could be differentiated into adipogenic, chondrogenic, and osteogenic lineage upon exposure to an appropriate cocktail of differentiating agents. Using a three-step protocol reported previously by our group, we succeeded in obtaining ICAs from DPSCs. The identity of ICAs was confirmed as islets by dithiozone-positive staining, as well as by expression of C-peptide, Pdx-1, Pax4, Pax6, Ngn3, and Isl-1. There were several-fold up-regulations of these transcription factors proportional to days of differentiation as compared with undifferentiated DPSCs. Day 10 ICAs released insulin and C-peptide in a glucose-dependent manner, exhibiting in vitro functionality. Our results demonstrated for the first time that DPSCs could be differentiated into pancreatic cell lineage and offer an unconventional and non-controversial source of human tissue that could be used for autologous stem cell therapy in diabetes.
  6. Ahmad H, Thambiratnam K, Zulkifli AZ, Lawrence A, Jasim AA, Kunasekaran W, et al.
    Sensors (Basel), 2013 Sep 30;13(10):13276-88.
    PMID: 24084118 DOI: 10.3390/s131013276
    An efficient and low cost optical method for directly measuring the concentration of homogenous biological solutes is proposed and demonstrated. The proposed system operates by Fresnel reflection, with a flat-cleaved single-mode fiber serving as the sensor probe. A laser provides a 12.9 dBm sensor signal at 1,550 nm, while a computer-controlled optical power meter measures the power of the signal returned by the probe. Three different mesenchymal stem cell (MSC) lines were obtained, sub-cultured and trypsinized daily over 9 days. Counts were measured using a haemocytometer and the conditioned media (CM) was collected daily and stored at -80 °C. MSCs release excretory biomolecules proportional to their growth rate into the CM, which changes the refractive index of the latter. The sensor is capable of detecting changes in the number of stem cells via correlation to the change in the refractive index of the CM, with the measured power loss decreasing approximately 0.4 dB in the CM sample per average 1,000 cells in the MSC subculture. The proposed system is highly cost-effective, simple to deploy, operate, and maintain, is non-destructive, and allows reliable real-time measurement of various stem cell proliferation parameters.
  7. Govindasamy V, Ronald VS, Abdullah AN, Ganesan Nathan KR, Aziz ZA, Abdullah M, et al.
    Cytotherapy, 2011 Nov;13(10):1221-33.
    PMID: 21929379 DOI: 10.3109/14653249.2011.602337
    BACKGROUND AIMS. Dental pulp stromal cells (DPSC) are considered to be a promising source of stem cells in the field of regenerative therapy. However, the usage of DPSC in transplantation requires large-scale expansion to cater for the need for clinical quantity without compromising current good manufacturing practice (cGMP). Existing protocols for cell culturing make use of fetal bovine serum (FBS) as a nutritional supplement. Unfortunately, FBS is an undesirable additive to cells because it carries the risk of transmitting viral and prion diseases. Therefore, the present study was undertaken to examine the efficacy of human platelet lysate (HPL) as a substitute for FBS in a large-scale set-up. METHODS. We expanded the DPSC in Dulbecco's modified Eagle's medium-knock-out (DMEM-KO) with either 10% FBS or 10% HPL, and studied the characteristics of DPSC at pre- (T25 culture flask) and post- (5-STACK chamber) large-scale expansion in terms of their identity, quality, functionality, molecular signatures and cytogenetic stability. RESULTS. In both pre- and post-large-scale expansion, DPSC expanded in HPL showed extensive proliferation of cells (c. 2-fold) compared with FBS; the purity, immune phenotype, colony-forming unit potential and differentiation were comparable. Furthermore, to understand the gene expression profiling, the transcriptomes and cytogenetics of DPSC expanded under HPL and FBS were compared, revealing similar expression profiles. CONCLUSIONS. We present a highly economized expansion of DPSC in HPL, yielding double the amount of cells while retaining their basic characteristics during a shorter time period under cGMP conditions, making it suitable for therapeutic applications.
  8. Lokman Hakim NYDB, Noble S, Thomas NV, Geegana Gamage BS, Maxwell GK, Govindasamy V, et al.
    Eur J Ophthalmol, 2022 Jan 17.
    PMID: 35037488 DOI: 10.1177/11206721211073430
    Over the last decades, the strategy of using stem cells has gained a lot of attention in treating many diseases. Recently, DR was identified as one of the common complications experienced by diabetic patients around the world. The current treatment strategy needs to be addressed since the active progression of DR may lead to permanent blindness. Interestingly, varieties of stem cells have emerged to optimize the therapeutic effects. It is also known that stem cells possess multilineage properties and are capable of differentiating, expanding in vitro and undergoing genetic modification. Moreover, modified stem cells have shown to be an ideal resource to prevent the degenerative disease and exhibit promising effects in conferring the migratory, anti-apoptotic, anti-inflammatory and provide better homing for cells into the damaged tissue or organ as well promoting healing properties. Therefore, the understanding of the functional properties of the stem cells may provide the comprehensive guidance to understand the manipulation of stem cells making them useful for long-term therapeutic applications. Hence in this review the potential use and current challenges of genetically modified stem cells to treat DR will be discussed along with its future perspectives.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links