Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Ng KP, Yew SM, Chan CL, Tan R, Soo-Hoo TS, Na SL, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23409267 DOI: 10.1128/genomeA.00148-12
    Herpotrichiellaceae spp. are known to be opportunistic human pathogens. Here, we report the ~28.46-Mb draft genome of Herpotrichiellaceae sp. UM 238, isolated from human skin scraping. The UM 238 genome was found to contain many classes of protective genes that are responsible for fungal adaptation under adverse environmental conditions.
  2. Ng KP, Yew SM, Chan CL, Chong J, Tang SN, Soo-Hoo TS, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23405310 DOI: 10.1128/genomeA.00056-12
    The emergence of the global threat of extensively drug-resistant (XDR) Mycobacterium tuberculosis reveals weaknesses in tuberculosis management and diagnostic services. We report the draft genome sequence of the first extensively drug-resistant Mycobacterium tuberculosis strain isolated in Malaysia. The sequence was also compared against a reference strain to elucidate the polymorphism that is related to their extensive resistance.
  3. Kuan CS, Yew SM, Chan CL, Toh YF, Lee KW, Cheong WH, et al.
    Database (Oxford), 2016;2016.
    PMID: 26980516 DOI: 10.1093/database/baw008
    Many species of dematiaceous fungi are associated with allergic reactions and potentially fatal diseases in human, especially in tropical climates. Over the past 10 years, we have isolated more than 400 dematiaceous fungi from various clinical samples. In this study, DemaDb, an integrated database was designed to support the integration and analysis of dematiaceous fungal genomes. A total of 92 072 putative genes and 6527 pathways that identified in eight dematiaceous fungi (Bipolaris papendorfii UM 226, Daldinia eschscholtzii UM 1400, D. eschscholtzii UM 1020, Pyrenochaeta unguis-hominis UM 256, Ochroconis mirabilis UM 578, Cladosporium sphaerospermum UM 843, Herpotrichiellaceae sp. UM 238 and Pleosporales sp. UM 1110) were deposited in DemaDb. DemaDb includes functional annotations for all predicted gene models in all genomes, such as Gene Ontology, EuKaryotic Orthologous Groups, Kyoto Encyclopedia of Genes and Genomes (KEGG), Pfam and InterProScan. All predicted protein models were further functionally annotated to Carbohydrate-Active enzymes, peptidases, secondary metabolites and virulence factors. DemaDb Genome Browser enables users to browse and visualize entire genomes with annotation data including gene prediction, structure, orientation and custom feature tracks. The Pathway Browser based on the KEGG pathway database allows users to look into molecular interaction and reaction networks for all KEGG annotated genes. The availability of downloadable files containing assembly, nucleic acid, as well as protein data allows the direct retrieval for further downstream works. DemaDb is a useful resource for fungal research community especially those involved in genome-scale analysis, functional genomics, genetics and disease studies of dematiaceous fungi. Database URL: http://fungaldb.um.edu.my.
  4. Yew SM, Chan CL, Kuan CS, Toh YF, Ngeow YF, Na SL, et al.
    BMC Genomics, 2016 Feb 03;17:91.
    PMID: 26842951 DOI: 10.1186/s12864-016-2409-8
    Ochroconis mirabilis, a recently introduced water-borne dematiaceous fungus, is occasionally isolated from human skin lesions and nails. We identified an isolate of O. mirabilis from a skin scraping with morphological and molecular studies. Its genome was then sequenced and analysed for genetic features related to classification and biological characteristics.
  5. Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, et al.
    BMC Genomics, 2015;16:471.
    PMID: 26092034 DOI: 10.1186/s12864-015-1692-0
    Chronic bacterial infections occur as a result of the infecting pathogen's ability to live within a biofilm, hence escaping the detrimental effects of antibiotics and the immune defense system. Burkholderia pseudomallei, a gram-negative facultative pathogen, is distinctive in its ability to survive within phagocytic and non-phagocytic cells, to persist in vivo for many years and subsequently leading to relapse as well as the development of chronic disease. The capacity to persist has been attributed to the pathogen's ability to form biofilm. However, the underlying biology of B. pseudomallei biofilm development remains unresolved.
  6. Tan KK, Tan YC, Chang LY, Lee KW, Nore SS, Yee WY, et al.
    BMC Genomics, 2015;16:93.
    PMID: 25888205 DOI: 10.1186/s12864-015-1294-x
    Brucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis.
  7. Kuan CS, Cham CY, Singh G, Yew SM, Tan YC, Chong PS, et al.
    PLoS One, 2016;11(8):e0161008.
    PMID: 27570972 DOI: 10.1371/journal.pone.0161008
    Cladophialophora bantiana is a dematiaceous fungus with a predilection for causing central nervous system (CNS) infection manifesting as brain abscess in both immunocompetent and immunocompromised patients. In this paper, we report comprehensive genomic analyses of C. bantiana isolated from the brain abscess of an immunocompetent man, the first reported case in Malaysia and Southeast Asia. The identity of the fungus was determined using combined morphological analysis and multilocus phylogeny. The draft genome sequence of a neurotrophic fungus, C. bantiana UM 956 was generated using Illumina sequencing technology to dissect its genetic fundamental and basic biology. The assembled 37.1 Mb genome encodes 12,155 putative coding genes, of which, 1.01% are predicted transposable elements. Its genomic features support its saprophytic lifestyle, renowned for its versatility in decomposing hemicellulose and pectin components. The C. bantiana UM 956 was also found to carry some important putative genes that engaged in pathogenicity, iron uptake and homeostasis as well as adaptation to various stresses to enable the organism to survive in hostile microenvironment. This wealth of resource will further catalyse more downstream functional studies to provide better understanding on how this fungus can be a successful and persistent pathogen in human.
  8. Kuan CS, Yew SM, Toh YF, Chan CL, Ngeow YF, Lee KW, et al.
    DNA Res, 2015 Jun;22(3):219-32.
    PMID: 25922537 DOI: 10.1093/dnares/dsv007
    Bipolaris papendorfii has been reported as a fungal plant pathogen that rarely causes opportunistic infection in humans. Secondary metabolites isolated from this fungus possess medicinal and anticancer properties. However, its genetic fundamental and basic biology are largely unknown. In this study, we report the first draft genome sequence of B. papendorfii UM 226 isolated from the skin scraping of a patient. The assembled 33.4 Mb genome encodes 11,015 putative coding DNA sequences, of which, 2.49% are predicted transposable elements. Multilocus phylogenetic and phylogenomic analyses showed B. papendorfii UM 226 clustering with Curvularia species, apart from other plant pathogenic Bipolaris species. Its genomic features suggest that it is a heterothallic fungus with a putative unique gene encoding the LysM-containing protein which might be involved in fungal virulence on host plants, as well as a wide array of enzymes involved in carbohydrate metabolism, degradation of polysaccharides and lignin in the plant cell wall, secondary metabolite biosynthesis (including dimethylallyl tryptophan synthase, non-ribosomal peptide synthetase, polyketide synthase), the terpenoid pathway and the caffeine metabolism. This first genomic characterization of B. papendorfii provides the basis for further studies on its biology, pathogenicity and medicinal potential.
  9. Kuan CS, Ng KP, Yew SM, Umar Meleh H, Seow HF, How KN, et al.
    Braz J Microbiol, 2023 Sep;54(3):1351-1372.
    PMID: 37351789 DOI: 10.1007/s42770-023-01032-z
    Neoscytalidium dimidiatum and Bipolaris species are fungal plant pathogens that have been reported to cause human diseases. Recently, we have isolated numerous N. dimidiatum and Bipolaris species from the skin scrapings and nails of different patients. In this work, we have sequenced the genome of one strain of N. dimidiatum. The sequenced genome was compared to that of a previously reported Bipolaris papendorfii genome for a better understanding of their complex lifestyle and broad host-range pathogenicity. Both N. dimidiatum UM 880 (~ 43 Mb) and B. papendorfii UM 226 (~ 33 Mb) genomes include 11,015-12,320 putative coding DNA sequences, of which 0.51-2.49% are predicted transposable elements. Analysis of secondary metabolism gene clusters revealed several genes involved in melanin biosynthesis and iron uptake. The arsenal of CAZymes related to plants pathogenicity is comparable between the species, including genes involved in hemicellulose and pectin decomposition. Several important gene encoding keratinolytic peptidases were identified in N. dimidiatum and B. papendorfii, reflecting their potential pathogenic role in causing skin and nail infections. In this study, additional information on the metabolic features of these two species, such as nutritional profiling, pH tolerance, and osmotolerant, are revealed. The genomic characterization of N. dimidiatum and B. papendorfii provides the basis for the future functional studies to gain further insights as to what makes these fungi persist in plants and why they are pathogenic to humans.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links