Bioassay test against malathion had been carried out with larval and adult stages of Aedes aegypti. The mosquitoes were under selection pressure against malathion for forty-five consecutive generations. The rate of resistance development was measured by LC(50) and LT(50) values. The larvae and adult females, after subjection to malathion selection for 45 generations, developed high resistance level to malathion, with resistance ratio of 52.7 and 3.24 folds, respectively over control mosquitoes. Cross-resistance towards the same and different groups of insecticides was determined using the F44 and F45 malathion-selected adult females. Insecticides tested were DDT (4.0%), permethrin (0.75%), propoxur (0.1%), fenitrothion (1%), λ-cyhalothrin (0.05%) and cyfluthrin (0.15%). Results indicated that the mosquitoes were highly resistant to DDT and fenitrothion, moderately resistant to propoxur, tolerant to permethrin and λ-cyhalothrin, and very low resistant to cyfluthrin.
The importance of house fly (Musca domestica L) wings in mechanical transmission of bacteria was studied. A droplet of phosphate-buffered saline containing Vibrio cholerae was rolled along one wing of each house fly. None adhered to the wings but small proportions of the bacterium were isolated from about half the wings. Vibrio cholerae was spread onto the ventral wing surfaces of each unconscious house fly which then was placed inside a bottle. When it regained consciousness, the types of activity it performed over five minutes were noted before the house fly was killed and the bacteria on its wings numerated. Control were house flies killed before inoculation. The proportion of house flies with bacteria on their wings and the mean number of bacteria remaining were significantly less on live house flies than killed controls. Among the live house flies, bacteria were detected on fewer house flies which flew (25%) than those which did not fly (81%). In addition, the mean number of bacteria on the former was significantly less than the latter (5 against 780 colonies). However, both these parameters were not significantly different between the group which performed and the group which did not perform wing grooming; takeoff and alighting over short distances, and somersaulting. Wings of unconscious house flies tethered by their thoraxes were inoculated with V. cholerae. After regaining consciousness, the house flies were allowed to move their wings in flight motions for up to 30 seconds. Small proportions of bacteria remained on all the house flies. House flies were placed in a chamber containing a liquid bait spiked with V. cholerae. After two hours, 10 were removed sequentially and cultured for V. cholerae. The bacterium was isolated from four house flies: two from the legs, and two others from their bodies minus legs and wings. In conclusion, house fly wings do not play an important role in mechanical transmission of bacteria suspended in a non-adhering liquid medium because of the low transfer rate of the bacteria to the wings and poor retention of bacteria on the wings during normal house fly activities.
There were a spate of recent complaints of insect bites and the entomological specimens received from various sources were identified to be those of cat flea (Ctenocephalides felis) and rat flea (Xenopsylla cheopis), the tropical bed-bug (Cimex hemipterus) and the dog louse (Heterodoxus spiniger). Only the fleas and the bed-bug are known to attack humans.
A study was carried out to investigate correlation between presence of specific microalgal species and Leptoconops biting midge larvae in its breeding habitats. Sand samples containing microalgae were collected from the beach where the midges were most commonly biting and from sand beaches which are potential as breeding habitats of Leptoconops. The survey covered sand beaches from 12 seperate islands. At all sites, the Bacillariophyta constituted the largest representatives of the microalgae community with the majority from the Naviculaceae family. A total of 24 microalgal species were identified from the sand samples collected from the study sites. Sand samples from Kentot Kecil Island had the highest number of algal species (11.0) and the highest algae species diversity ( Shanon-Weiner Diversity Index, H' = 0.884). Besar Island (Johor) had the lowest number of algal species (2.0) whereas Tengol A Island had the lowest algae species diversity (H'=0.234). Highest similarity index was recorded between sand samples collected from Tengol A Island and Tengol B Island (75.0%) followed by Besar Island (Melaka) and Tengol B Island (62.0 %). The variation between other islands were relatively high. Virtually many kinds of algae were found where Leptoconops were breeding but Fragilaria intermedia, Mastigloia minuta and Navicula advena were particularly common.
Forensic entomological specimens received by the Unit of Medical Entomology, IMR., from hospitals and the police in Malaysia in the last 3 decades (1972 - 2002) are reviewed. A total of 448 specimens were received. From these, 538 identifications were made with the following results: Eighteen species of cyclorrphaga flies were identified consisting of Chrysomya megacephala (Fabricius) 215 cases (47.99%), Ch. rufifacies (Masquart) 132 (29.46%), Ch. villeneuvi Patton 10 (2.23%), Ch. nigripes Aubertin 7 (1.56%), Ch. bezziana Villeneuve 4 (0.89%), Ch. pinguis (Walker) 1 (0.22%), Chrysomya sp. 47 (10.49%), Sarcophaga sp. 28 (6.25%), Lucilia sp. 21 (4.69%), Hermetia sp. 15 (3.35%), He. illucens (Linnaeus) 1 (0.22%), Hemipyrellia ligurriens (Wiedemann) 3 (0.67%), Hemipyrellia sp. 2 (0.45%), Ophyra spinigera 1 (0.22%), Ophyra sp. 6 (1.34%), Calliphora sp. 24 (5.36%), Synthesiomyia nudiseta (Wulp) 1 (0.22%) and Eristalis sp. 1 (0.22%). Other non - fly insect specimens are Pthirus pubis (Linnaeus) (Pubic louse) 2 (0.45%) and Coleoptera (Beetles) 1 (0.22%). Ch. megacephala and Ch. rufifacies were the commonest species found in cadavers from different ecological habitats. Sy. nudiseta is an uncommon species, thus far found only on cadavers from indoors. Sy. nudiseta is reported for the second time in Peninsular Malaysia. A total of 329 cases (73.44%) had a single fly infestation, 109 cases (24.33%) had double fly infestation and 10 cases (2.23%) had triple fly infestation. Five cases (1.12%) had eggs and 3 cases (0.67%) had larval stages that were not identifiable. No arthropods were retrieved from cadavers in 8 cases (1.79%). In conclusion, although large number of fly species were found on human cadavers, the predominant species are still those of Chrysomya.
The susceptibility of Culex quinquefasciatus to chemical insecticides in two field sites in Kuala Lumpur was evaluated using the WHO standard susceptibility test. Less then 7 days old female mosquitos, reared from wild caught females were exposed to discriminating dosages of insecticides at recommended exposure periods. The larval bioassay were conducted using the multiple concentrations and the LC50 value was determined. The results indicated that cyfluthrin is the most effective among all the insecticides tested with LT50 value of 29.95 min and 28.59 min, for the strain from Ampang Hill and Pantai Dalam, respectively. It was surprisingly to note that both these field strains showed 0% mortality when tested against malathion and DDT. The LC50 value indicated that both strains were highly resistant to malathion with resistance ratio of 17,988 folds and 14,053 folds, respectively. This concludes that resistance at larval stages is extremely high compared to adult stages.
A study of chikungunya virus was carried out to establish Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) as a rapid detection technique of the virus. The susceptibility of lab-colonized Aedes aegypti to chikungunya virus was also determined. Artificial membrane feeding technique was used to orally feed the mosquitoes with a human isolate of chikungunya virus. A total of 100 fully engorged female Ae. aegypti were obtained and maintained for 7 days. Seventy of them survived and then pooled at 10 individuals per pool. Total RNA was extracted from the samples and RT-PCR amplifications were carried out. Five out of 7 pools showed positive PCR band at 350-bp, indicating Ae. aegypti is a potential vector of chikungunya virus. The minimum infection rate (MIR) was 71% within these laboratory colonies. RT-PCR is a sensitive technique that is useful in detecting infected mosquitoes in epidemic areas. This technique can de used as a rapid detection method and provide an early virologic surveillance systems of chikungunya virus infected mosquitoes.
Field bioefficacy of residual-sprayed deltamethrin against Aedes vectors was evaluated in an urban residential area in Kuala Lumpur. The trial area consisted of single storey wood-brick houses and a block of flat. The houses were treated with outdoor residual spraying while the flat was used as an untreated control. Initial pre-survey using ovitrap surveillance indicated high Aedes population in the area. Deltamethrin WG was sprayed at a dosage of 25mg/m2 using a compression sprayer. The effectiveness of deltamethrin was determined by wall bioassay and ovitrap surveillance. The residual activity of 25mg/m2 deltamethrin was still effective for 6 weeks after treatment, based on biweekly bioassay results. Bioassay also indicated that both Aedes aegypti and Aedes albopictus were more susceptible on the wooden surfaces than on brick. Aedes aegypti was more susceptible than Ae. albopictus against deltamethrin. Residual spraying of deltamethrin was not very effective against Aedes in this study since the Aedes population in the study area did not reduce as indicated by the total number of larvae collected using the ovitrap (Wilcoxon Sign Test, p> 0.05). Further studies are required to improve the effectiveness of residual spraying against Aedes vectors.
The compatibility of the commercial aqueous Bacillus thuringiensis serovar israelensis (B.t.i.) formulation, Vectobac 12AS, with the chemical insecticides Actellic 50EC, Aqua Resigen, Resigen, and Fendona SC, for the simultaneous control of Aedes larvae and adults was studied by dispersing nine different formulations using a portable mist blower, in single story half-brick houses. The effectiveness of the treatment was evaluated by measuring the larval mortality, adult mortality, and droplet analysis at varying distances from the sprayer. Persistence of the larvicidal activity of the chemical insecticides and B.t.i was also determined by measuring the larval mortality in the test samples 7 days posttreatment. The sprayed particles in all the trials were 50-60 microns in size, indicating that the particles were those of mist spray. Test samples placed within 3 m from the sprayer gave the maximum larval and adult mortality. Chemical insecticides exhibited maximum larval mortality in the 1 h posttreatment test samples and it was comparable to the larvicidal activity of B.t.i. The larvicidal toxins of B.t.i were more stable and were able to affect sufficient larval mortality for 7 days posttreatment. The larvicidal activity of the mixtures, i.e., chemical insecticides with B.t.i, in the 1 h posttreatment test samples was not significantly different from the larvicidal activity of the chemical insecticides and it was comparable to the larvicidal activity of B.t.i alone. However, the larvicidal activity of the mixtures was significantly more than the chemical insecticides alone in the 7 days posttreatment test samples except for the Actellic 50EC and Vectobac 12AS mixture. In all the trials, with or without B.t.i, there was no significant difference in adult mortality, indicating that this B.t.i formulation, Vectobac 12AS, was not antagonistic to the adulticidal activity of the chemical insecticides. From this study, it can be concluded that chemical insecticides can be used effectively for both adult and larval control, but the chemical insecticides do not exhibit residual larvicidal activity. Hence, for an effective control of both Aedes larvae and adults, it is advisable to add B.t.i. to the chemical insecticides, as B.t.i is specifically larvicidal and is also able to effect extended residual larvicidal activity.
The combined adulticidal, larvicidal, and wall residual activity of ULV-applied bifenthrin, a synthetic pyrethroid, was evaluated in houses in Kuala Lumpur, Malaysia, against larvae and adults of lab-bred Aedes aegypti and Culex quinquefasciatus. A portable ULV sprayer was used to disperse a ULV formulation of bifenthrin at a discharge rate of 45 ml/min. The results indicated that bifenthrin sprayed at this rate exhibited all the three activities against the test mosquitoes. Complete adult mortalities were achieved, while very high larvicidal activity was also effected, which persisted for seven days. Wall bioassay with adults of Ae aegypti also resulted in very high mortality, which also persisted for one week. The combined mosquitocidal activities of bifenthrin is considered more effective especially in the control of dengue vectors.
Wolbachia-based vector control strategies have been proposed as a mean to augment the existing measures for controlling dengue vector. Prior to utilizing Wolbachia in novel vector control strategies, it is crucial to understand the Wolbachia-mosquito interactions. Many studies have only focused on the prevalence of Wolbachia in female Aedes albopictus with lack of attention on Wolbachia infection on the male Ae. albopictus which also affects the effective expression of Wolbachia induced- cytoplasmic incompatibility (CI). In this study, field surveys were conducted to screen for the infection status of Wolbachia in female and male Ae. albopictus from various habitats including housing areas, islands and seashore.
This study was conducted to determine the inhibitory effects of ribavirin and hydroxyurea on dengue virus replication in Aedes aegypti mosquitoes. Female Ae. aegypti mosquitoes were infected with dengue-2 virus and fed ribavirin at a dose of 0.3 mg/ml and/or hydroxyurea at a dose of 6 mg/ml via artificial membrane feeding technique. The virus in infected mosquitoes was isolated using C6/36 cell culture. Peroxidase-antiperoxidase (PAP) staining was used to detect dengue-infected C6/36 cells and to quantify the level of infection by determining the presence of infected cells. In mosquitoes treated with ribavirin alone, hydroxyurea alone or both drugs in combination had reductions in dengue infection rates of 87.72, 89.47 and 95.61%, respectively. The mortalities of female Ae. aegypti mosquitoes fed with these drugs were significantly higher than the control. Ribavirin also had an inhibitory effect on the fecundity of female Ae. aegypti mosquitoes.
A pilot study was undertaken to determine the effectiveness of space application of insecticides for the control of malaria in Ranau, a district in Sabah. A village each was treated monthly: with chemical adulticide--alpha cypermethrin (Fendona SC(R)/10SC(R)) at 2 g a.i./10,000 m2 in Pahu; with biological larvicides--Bacillus thuringiensis israelensis (Vectobac 12AS(R)) at 500 ml/10,000 m2 or B. sphaericus (Vectolex WG(R)) at 500 g/10,000 m2 in Pinawantai; and with a mixture of chemical adulticide and biological larvicide in Togop Laut. All sprayings were conducted using a portable mist blower. During the study period all villages, including Tarawas the untreated village, received the conventional malaria control measures. Entomological and epidemiological surveillance was used to measure the effectiveness of the space application. The entomological surveillance indicated that the An. balabacensis population was significantly reduced by alpha cypermethrin in Pahu and Togop Laut and B. sphaericus in Pinawantai; but was not reduced by B.t.i. in Pinawantai. There was a significant reduction in the number of malaria cases and in the slide positivity rate in the treated villages during the study period. The pilot study does indicate that space application of larvicides/adulticides or a mixture of both is able to reduce the malaria vector population and the malaria transmission. A larger scale study needs to be undertaken in a malarious village/province to determine whether space application of insecticides together with other malaria control measures will be able to eradicate malaria.
The insecticide resistance status of 4 strains of adult male Blattella germanica, viz M (Malacca), E (England), F (restaurant) and K (cafeteria) against malathion and bendiocarb compared with a reference susceptible strain (S) was determined by using a modified WHO bioassay method. The results indicated that all the 4 strains were resistant to the insecticides albeit in different degrees. Resistance ratios for malathion ranged from 1.85-41.07-fold, whereas that of bendiocarb ranged from 1.68-4.83-fold. The biochemical microplate enzyme assays technique employed indicated that the resistance in M and E strains were attributed to acetylcholinesterase insensitivity. Multiple resistance was not detected in any of the 4 strains. Parameters of the identified resistance mechanism correlated well with the observed level of resistance. Agar gel electrophoresis showed that variations in esterase isoenzymes did not confer organophosphate and carbamate resistance to the 4 strains.
In this study, artificial membrane feeding technique was used to orally feed Aedes aegypti with dengue and chikungunya viruses. Virus detection was carried out by reverse transcriptase polymerase chain reaction. The study did not detect dual infection of Ae. aegypti with dengue and chikungunya virus from the same pool or from individual mosquitoes. Oral receptivity of Ae. aegypti to chikungunya virus was higher than that of dengue virus.
A study was conducted to examine the persistency of transovarial dengue virus type 2 (DEN-2) in a Selangor strain of Aedes aegypti mosquitoes. Two hundred 4-5 day old female mosquitoes were fed with blood containing dengue virus. The infected mosquitoes were reared to the 7th generation; each generation was screened for the virus using immunological staining methods. The virus was detectable until the 5th generation but absent in the 6th and the 7th generations. Therefore, dengue virus type 2 can be transmitted transovarially in Aedes aegypti mosquitoes until the fifth generation under laboratory conditions.
Wild caught female Culex quinquefasciatus (Say) from Kuala Lumpur were blood fed and reared in the insectarium. The late third stage of the F1 larvae which survived the high selection pressure of malathion and permethrin were reared and colonies were established from adults that emerged. Larvae from these colonies were then subjected in the subsequent 9 generations to higher selection pressure. The rate of resistance development were measured by LC50 value of larval bioassay, LT50 value of adult bioassay and the frequency of the elevated esterase levels. In another set of experiments using the same batch of Culex mosquitos, the larvae were not exposed to any insecticides and the decrease in resistance rate was monitored in each subsequent 9 generations by using similar methods. The heterozygous standard laboratory strain was selected for susceptibility using the single raft sib-selection method. The result showed that the field collected F1 generation was 96.0 and 6.3 fold more resistant to malathion and permethrin, respectively. After selection for about 9 generations the resistance ratio to malathion and permethrin was 6.2 and 767.3 fold more compared to the LC50 values of F1 generations, respectively. Esterase in F1 larvae was 6.0 fold more than the standard laboratory strain.
Rapid enzyme microassays for the detection of resistance due to organophosphate and carbamate in individual field-collected strains of Culex quinquefasciatus adults were conducted. These tests allowed accurate differentiation by eye, on the basis of color changes of susceptible and resistant individuals. Two separate tests were conducted for the biochemical assays. In the insensitive acetylcholinesterase (AChE) test, acetylthiocholine iodide (ACTH) and 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) were used as substrate and coupling agent respectively. The resulting yellow chromophore indicated AChE activity. Test results showed that the color intensity decreased as increasing concentrations of propoxur were added, thereby confirming the susceptibility of the enzyme to inhibitor. Assay of non-specific esterase however, indicated elevated levels which were correlated with degree of malathion resistance. Electrophoretic data revealed the presence of 2 esterase bands in all strains. It was concluded that such a pattern was not contributory to malathion resistance in adults.