Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Pereda J, Niimi G, Kaul JM, Mishra S, Pangtey B, Peri D, et al.
    Surg Radiol Anat, 2009 Sep;31 Suppl 1:49-93.
    PMID: 27392491 DOI: 10.1007/BF03371485
  2. Mishra S, Mylarappa A, Satapathy D, Samal S
    Malays Orthop J, 2021 Nov;15(3):8-14.
    PMID: 34966489 DOI: 10.5704/MOJ.2111.002
    Introduction: The Anterior Cruciate Ligament tends to stabilise the knee in various range of extension and flexion. Precise study of anatomy, attachments and position of bundles is important for successful ACL reconstruction. In our study, we attempt to assess general anatomy of ACL, determine and compare its morphometric data pertaining to length and width and its tibio-femoral foot prints in different gender and secondarily determine changes in the same during ACL dynamics witnessed during knee flexion changes.

    Materials and methods: A total of 19 knees from 10 cadavers were used in the research with mean age of 61±7 years. After dissecting the skin, muscles, patellar and articular capsule were removed and bundle attachments were studied. Thereafter the relative length, width and stiffness of ACL bundles at 0, 90, 140 (maximum) angles of knee flexion were measured along with maximum horizontal and vertical bundle footprints at tibio-femoral attachments were recorded.

    Results: Mean length and width of insertion of anteromedial (AM) bundle on the tibial surface was 8.8mm and 9.0mm in males and 8.1mm and 8.8mm in females. Furthermore, that of PL bundle was 9.1mm and 7.8mm in males and 8.9mm and 7.1mm in females.

    Conclusion: The anteromedial (AM) bundle and posterolateral (PL) bundle of ACL were found to be most relaxed at full extension and were most taut at maximum flexion of 140°. AM bundle underwent greater stretching and change of length in comparison to the PL bundle, indicating that it is comparatively a more dominant bundle.

  3. Srivastava N, Mishra S, Iqbal H, Chanda D, Shanker K
    J Ethnopharmacol, 2021 May 10;271:113911.
    PMID: 33571614 DOI: 10.1016/j.jep.2021.113911
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga L. rhizome (KGR) is part of more than sixty-one Ayurvedic formulations and commonly known as 'Chandramula'. KGR is widely used in traditional Indian medicines to treat fever (jwar), rheumatism (Amavata), respiratory (Shwasa), hypertension (Vyanabala vaishamya) and cardiovascular disorders (Vyanavayu Dushtijanya Hrudrog). Although ethnomedicinal properties have extensively been demonstrated in traditional medicines of south-east countries i.e. China, India, Indonesia, and Malaysia, the chemico-biological validation are still lacking.

    AIM OF THE STUDY: Chemico-biological standardization with respect to its vasorelaxation potential is the main objective of the present study. To investigate the vasorelaxation potential of key phytochemical of KGR, i.e., ethyl-p-methoxycinnamate (EPMC) and to study it's the mechanism of action.

    MATERIALS AND METHODS: A HPLC method was developed and validated for the quality assessment of KGR using its two major phytochemicals i.e. ethyl-p-methoxycinnamate (EPMC) and ethyl cinnamate (EC) in KGR. The vasorelaxation effect of major phytochemicals of KGR was evaluated on the main mesenteric arteries isolated from male Wistar rats. Specific BKca channel blocker tetraethylammonium (TEA), receptor antagonist, nitric oxide scavenging capacity, and antioxidant potential were also evaluated for its plausible mechanism.

    RESULTS: Present validated HPLC method facilitates simultaneous quantitation of EPMC and EC faster than classical GC techniques. EPMC has shown a dose-dependent relaxation in rat main mesenteric arteries (MMA) contracted by U46619 with an Emax of 58.68 ± 3.31%. Similarly, in endothelium-denuded MMA rings, relaxation was also observed (Emax of 61.83 ± 3.38%). Moreover, relaxation response to EPMC has strongly inhibited (Emax 14.76 ± 2.29%) when the tissue exposed to depolarizing high K+ containing buffer for the contraction. The point correlation dimension (pD2) values were also significantly decreased in high K+ treated arterial rings compared to control. Interestingly, when MMA rings incubated with a specific BKca channel blocker (TEA, 1 mM), the relaxation response to EPMC was also significantly blocked.

    CONCLUSIONS: The first time this study demonstrated the chemical standardization of K. galanga rhizome and EPMC is responsible for its vasorelaxation potential as demonstrated by the endothelium-independent response mediated by Ca2+ dependent potassium channels.

  4. Mishra SS, Shekhar MS
    Indian J Exp Biol, 2005 Jul;43(7):654-61.
    PMID: 16053274
    Microbiological analysis of samples collected from cases of white spot disease outbreaks in cultured shrimp in different farms located in three regions along East Coast of India viz. Chidambram (Tamil Nadu), Nellore (Andhra Pradesh) and Balasore (Orissa), revealed presence of Vibrio alginolyticus, Vibrio parahaemolyticus, and Aeromonas spp. but experimental infection trials in Penaeus monodon with these isolates did not induce any acute mortality or formation of white spots on carapace. Infection trials using filtered tissue extracts by oral and injection method induced mortality in healthy P. monodon with all samples and 100% mortality was noted by the end of 7 day post-inoculation. Histopathological analysis demonstrated degenerated cells characterized by hypertrophied nuclei in gills, hepatopancreas and lymphoid organ with presence of intranuclear basophilic or eosino-basophilic bodies in tubular cells and intercellular spaces. Analysis of samples using 3 different primer sets as used by other for detection of white spot syndrome virus (WSSV) generated 643, 1447 and 520bp amplified DNA products in all samples except in one instance. Variable size virions with mean size in the range of 110 x 320 +/- 20 nm were observed under electron microscope. It could be concluded that the viral isolates in India involved with white spot syndrome in cultured shrimp are similar to RV-PJ and SEMBV in Japan, WSBV in Taiwan and WSSV in Malaysia, Indonesia, Thailand, China and Japan.
  5. Sinha A, Mishra S, Sharif A, Yarovaya L
    J Environ Manage, 2021 Aug 15;292:112751.
    PMID: 33991831 DOI: 10.1016/j.jenvman.2021.112751
    Striving to achieve the Sustainable Development Goals (SDGs), countries are increasingly embracing a sustainable financing mechanism via green bond financing. Green bonds have attracted the attention of the industrial sector and policymakers, however, the impact of green bond financing on environmental and social sustainability has not been confirmed. There is no empirical evidence on how this financial product can contribute to achieving the goals set out in Agenda 2030. In this study, we empirically analyze the impact of green bond financing on environmental and social sustainability by considering the S&P 500 Global Green Bond Index and S&P 500 Environmental and Social Responsibility Index, from October 1, 2010 to 31st July 2020 using a combination of Quantile-on-Quantile Regression and Wavelet Multiscale Decomposition approaches. Our results reveal that green financing mechanisms might have gradual negative transformational impacts on environmental and social responsibility. Furthermore, we attempt to design a policy framework to address the relevant SDG objectives.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links