OBJECTIVE: The objective of this article is to evaluate the accuracy of controlled attenuation parameter (CAP) obtained using the XL probe for the estimation of hepatic steatosis in patients with non-alcoholic fatty liver disease (NAFLD).
METHODS: Adult NAFLD patients with a liver biopsy within six months were included and were examined with the FibroScan® M and XL probes. Histopathological findings were reported according to the Non-Alcoholic Steatohepatitis Clinical Research Network Scoring System. Participants who did not have fatty liver on ultrasonography were recruited as controls.
RESULTS: A total of 57 NAFLD patients and 22 controls were included. The mean age of the NAFLD patients and controls was 50.1 ± 10.4 years and 20.2 ± 1.3 years, respectively (p = 0.000). The mean body mass index was 30.2 ± 5.0 kg per m2 and 20.5 ± 2.4 kg per m2, respectively (p = 0.000). The distribution of steatosis grades were: S0, 29%; S1, 17%; S2, 35%; S3, 19%. The AUROC for estimation of steatosis grade ≥ S1, S2 and S3 was 0.94, 0.80 and 0.69, respectively, using the M probe, and 0.97, 0.81 and 0.67, respectively, using the XL probe.
CONCLUSION: CAP obtained using the XL probe had similar accuracy as the M probe for the estimation of hepatic steatosis in NAFLD patients.
METHODS: We performed a prospective study of consecutive adults with NAFLD who were scheduled for a liver biopsy at a tertiary hospital in Malaysia. Patients underwent VLFF and CAP measurements on the same day as their liver biopsy. Histopathology analyses of liver biopsy specimens were reported according to the Nonalcoholic Steatohepatitis Clinical Research Network scoring system. Stereologic analysis was performed using grid-point counting method combined with the Delesse principle.
RESULTS: We analyzed data from 97 patients (mean age 57.0 ± 10.1 years; 44.33% male; 91.8% obese; 95.9% centrally obese). Based on histopathology analysis, the area under receiver operating characteristic curve (AUROC) for VLFF in detection of steatosis grade ≥S2 was 0.92 and for CAP the AUROC was 0.65 (P < .001). Based on stereological analysis, the AUROC for VLFF for detection of steatosis grade ≥S2 was 0.92 and for CAP the AUROC was 0.63, (P = .002); for identification of steatosis grade S3, the AUROC for VLFF was 0.92 and for CAP the AUROC was 0.68 (P < .001).
CONCLUSIONS: In a prospective study of patients with NAFLD undergoing liver biopsy analysis, we found VLFF to more accurately determine grade of hepatic steatosis than CAP.
METHODS: This is a single-centre prospective study of a well-characterized cohort of MAFLD patients who underwent liver biopsy and followed every 6-12 months for adverse clinical outcomes.
RESULTS: The data for 202 patients were analyzed [median age 55.0 (48.0-61.3) years old; male, 47.5%; obese, 88.6%; diabetes mellitus, 71.3%; steatohepatitis, 76.7%; advanced fibrosis, 27.2%]. The median follow-up interval was 7 (4-8) years. The cumulative incidence of liver-related events, cardiovascular events, malignancy and mortality was 0.43, 2.03, 0.60 and 0.60 per 100 person-years of follow-up, respectively. Liver-related events were only seen in patient with advanced fibrosis at 9.1% vs 0% in patient without advanced liver fibrosis (p
METHODS: The 4,501 patients were selected from National Cancer Patient Registry-Colorectal Cancer data. Patient survival status was cross-checked with the National Registration Department. The age-standardised rate (ASR) was calculated as the proportion of CRC cases (incidence) and deaths (mortality) from 2008 to 2013, weighted by the age structure of the population, as determined by the Department of Statistics Malaysia and the World Health Organization world standard population distribution.
RESULTS: The overall incidence rate for CRC was 21.32 cases per 100,000. Those of Chinese ethnicity had the highest CRC incidence (27.35), followed by the Malay (18.95), and Indian (17.55) ethnicities. The ASR incidence rate of CRC was 1.33 times higher among males than females (24.16 and 18.14 per 100,000, respectively). The 2011 (44.7%) CRC deaths were recorded. The overall ASR of mortality was 9.79 cases, with 11.85 among the Chinese, followed by 9.56 among the Malays and 7.08 among the Indians. The ASR of mortality was 1.42 times higher among males (11.46) than females (8.05).
CONCLUSIONS: CRC incidence and mortality is higher in males than females. Individuals of Chinese ethnicity have the highest incidence of CRC, followed by the Malay and Indian ethnicities. The same trends were observed for the age-standardised mortality rate.
METHODS: This was a multicenter study of 489 patients with biopsy-proven NAFLD and 69 patients with NAFLD-related or cryptogenic HCC. Antihepatitis B core antibody (anti-HBc) was used to detect the previous HBV infection.
RESULTS: In the biopsy cohort, positive anti-HBc was associated with lower steatosis grade but higher fibrosis stage. 18.8% and 7.5% of patients with positive and negative anti-HBc had cirrhosis, respectively (P < 0.001). The association between anti-HBc and cirrhosis remained significant after adjusting for age and metabolic factors (adjusted odds ratio 2.232; 95% confidence interval, 1.202-4.147). At a mean follow-up of 6.2 years, patients with positive anti-HBc had a higher incidence of HCC or cirrhotic complications (6.5% vs 2.2%; P = 0.039). Among patients with NAFLD-related or cryptogenic HCC, 73.9% had positive anti-HBc. None of the patients had positive serum HBV DNA. By contrast, antihepatitis B surface antibody did not correlate with histological severity.
DISCUSSION: Positive anti-HBc is associated with cirrhosis and possibly HCC and cirrhotic complications in patients with NAFLD. Because a significant proportion of NAFLD-related HCC may develop in noncirrhotic patients, future studies should define the role of anti-HBc in selecting noncirrhotic patients with NAFLD for HCC surveillance.
AIMS: We developed and validated MAFLD fibrosis score (MFS) for identifying advanced fibrosis (≥F3) among MAFLD patients.
METHODS: This cross-sectional, multicentre study consecutively recruited MAFLD patients receiving tertiary care (Malaysia as training cohort [n = 276] and Hong Kong and Wenzhou as validation cohort [n = 431]). Patients completed liver biopsy, vibration-controlled transient elastography (VCTE), and clinical and laboratory assessment within 1 week. We used machine learning to select 'highly important' predictors of advanced fibrosis, followed by backward stepwise regression to construct MFS formula.
RESULTS: MFS was composed of seven variables: age, body mass index, international normalised ratio, aspartate aminotransferase, gamma-glutamyl transpeptidase, platelet count, and history of type 2 diabetes. MFS demonstrated an area under the receiver-operating characteristic curve of 0.848 [95% CI 0.800-898] and 0.823 [0.760-0.886] in training and validation cohorts, significantly higher than aminotransferase-to-platelet ratio index (0.684 [0.603-0.765], 0.663 [0.588-0.738]), Fibrosis-4 index (0.793 [0.735-0.854], 0.737 [0.660-0.814]), and non-alcoholic fatty liver disease fibrosis score (0.785 [0.731-0.844], 0.750 [0.674-0.827]) (DeLong's test p