Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Ng ZY, Ajeng AA, Cheah WY, Ng EP, Abdullah R, Ling TC
    J Environ Manage, 2024 Jan 01;349:119445.
    PMID: 37890301 DOI: 10.1016/j.jenvman.2023.119445
    Biofertilizers encompass microorganisms that can be applied to plants, subsequently establishing themselves within the plant's rhizosphere or internal structures. This colonization stimulates plant development by enhancing nutrient absorption from the host. While there is growing literature documenting the applications of microalgae-based and bacterial-based biofertilizers, the research focusing on the effectiveness of consortia formed by these microorganisms as short-term plant biofertilizers is notably insufficient. This study seeks to assess the effectiveness of microalgae-bacterial biofertilizers in promoting plant growth and their potential contribution to the circular economy. The review sheds light on the impact of microalgae-bacterial biofertilizers on plant growth parameters, delving into factors influencing their efficiency, microalgae-bacteria interactions, and effects on soil health. The insights from this review are poised to offer valuable guidance to stakeholders in agriculture, including farmers, environmental technologists, and businesses. These insights will aid in the development and investment in more efficient and sustainable methods for enhancing crop yields, aligning with the Sustainable Development Goals and principles of the circular economy.
  2. Wilawan B, Chan SS, Ling TC, Show PL, Ng EP, Jonglertjunya W, et al.
    Mol Biotechnol, 2024 Mar;66(3):402-423.
    PMID: 37270443 DOI: 10.1007/s12033-023-00768-1
    The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.
  3. Choo MY, Oi LE, Daou TJ, Ling TC, Lin YC, Centi G, et al.
    Materials (Basel), 2020 Jul 11;13(14).
    PMID: 32664579 DOI: 10.3390/ma13143104
    Nickel-based catalysts play an important role in the hydrogen-free deoxygenation for the production of biofuel. The yield and quality of the biofuel are critically affected by the physicochemical properties of NiO supported on nanosized zeolite Y (Y65, crystal size of 65 nm). Therefore, 10 wt% NiO supported on Y65 synthesized by using impregnation (IM) and deposition-precipitation (DP) methods were investigated. It was found that preparation methods have a significant effect on the deoxygenation of triolein. The initial rate of the DP method (14.8 goil·h-1) was 1.5 times higher than that of the IM method (9.6 goil·h-1). The DP-Y65 showed the best deoxygenation performance with a 80.0% conversion and a diesel selectivity of 93.7% at 380 °C within 1 h. The outstanding performance from the DP method was due to the smaller NiO particle size (3.57 ± 0.40 nm), high accessibility (H.F value of 0.084), and a higher Brönsted to Lewis acidity (B/L) ratio (0.29), which has improved the accessibility and deoxygenation ability of the catalyst. The NH4+ released from the decomposition of the urea during the DP process increased the B/L ratio of zeolite NaY. As a result, the pretreatment to convert Na-zeolite to H-zeolite in a conventional zeolite synthesis can be avoided. In this regard, the DP method offers a one-pot synthesis to produce smaller NiO-supported nanosized zeolite NaY with a high B/L ratio, and it managed to produce a higher yield with selectivity towards green diesel via deoxygenation under a hydrogen-free condition.
  4. Ng EP, Ahmad NH, Khoerunnisa F, Mintova S, Ling TC, Daou TJ
    Molecules, 2021 Apr 13;26(8).
    PMID: 33924655 DOI: 10.3390/molecules26082238
    Offretite zeolite synthesis in the presence of cetyltrimethylammonium bromide (CTABr) is reported. The offretite crystals were synthesized with a high crystallinity and hexagonal prismatic shape after only 72 h of hydrothermal treatment at 180 °C. The CTABr has dual-functions during the crystallization of offretite, viz. as structure-directing agent and as mesoporogen. The resulting offretite crystals, with a Si/Al ratio of 4.1, possess more acid sites than the conventional offretite due to their high crystallinity and hierarchical structure. The synthesized offretite is also more reactive than its conventional counterpart in the acylation of 2-methylfuran for biofuel production under non-microwave instant heating condition, giving 83.5% conversion with 100% selectivity to the desired product 2-acetyl-5-methylfuran. Hence, this amphiphile synthesis approach offers another cost-effective and alternative route for crystallizing zeolite materials that require expensive organic templates.
  5. Abu Osman NA, Nordin NI, Tan KC, Hosri NAHA, Pei Q, Ng EP, et al.
    Materials (Basel), 2023 Jan 16;16(2).
    PMID: 36676604 DOI: 10.3390/ma16020867
    Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.
  6. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, et al.
    Bioresour Technol, 2017 Dec;246:2-11.
    PMID: 28844690 DOI: 10.1016/j.biortech.2017.08.009
    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links