PURPOSE: Minimum clinical standards for assessment and management of osteoporosis are needed in the Asia-Pacific (AP) region to inform clinical practice guidelines (CPGs) and to improve osteoporosis care. We present the framework of these clinical standards and describe its development.
METHODS: We conducted a structured comparative analysis of existing CPGs in the AP region using a "5IQ" model (identification, investigation, information, intervention, integration, and quality). One-hundred data elements were extracted from each guideline. We then employed a four-round Delphi consensus process to structure the framework, identify key components of guidance, and develop clinical care standards.
RESULTS: Eighteen guidelines were included. The 5IQ analysis demonstrated marked heterogeneity, notably in guidance on risk factors, the use of biochemical markers, self-care information for patients, indications for osteoporosis treatment, use of fracture risk assessment tools, and protocols for monitoring treatment. There was minimal guidance on long-term management plans or on strategies and systems for clinical quality improvement. Twenty-nine APCO members participated in the Delphi process, resulting in consensus on 16 clinical standards, with levels of attainment defined for those on identification and investigation of fragility fractures, vertebral fracture assessment, and inclusion of quality metrics in guidelines.
CONCLUSION: The 5IQ analysis confirmed previous anecdotal observations of marked heterogeneity of osteoporosis clinical guidelines in the AP region. The Framework provides practical, clear, and feasible recommendations for osteoporosis care and can be adapted for use in other such vastly diverse regions. Implementation of the standards is expected to significantly lessen the global burden of osteoporosis.
Objective: The World Health Organization organized the first global infodemiology conference, entirely online, during June and July 2020, with a follow-up process from August to October 2020, to review current multidisciplinary evidence, interventions, and practices that can be applied to the COVID-19 infodemic response. This resulted in the creation of a public health research agenda for managing infodemics.
Methods: As part of the conference, a structured expert judgment synthesis method was used to formulate a public health research agenda. A total of 110 participants represented diverse scientific disciplines from over 35 countries and global public health implementing partners. The conference used a laddered discussion sprint methodology by rotating participant teams, and a managed follow-up process was used to assemble a research agenda based on the discussion and structured expert feedback. This resulted in a five-workstream frame of the research agenda for infodemic management and 166 suggested research questions. The participants then ranked the questions for feasibility and expected public health impact. The expert consensus was summarized in a public health research agenda that included a list of priority research questions.
Results: The public health research agenda for infodemic management has five workstreams: (1) measuring and continuously monitoring the impact of infodemics during health emergencies; (2) detecting signals and understanding the spread and risk of infodemics; (3) responding and deploying interventions that mitigate and protect against infodemics and their harmful effects; (4) evaluating infodemic interventions and strengthening the resilience of individuals and communities to infodemics; and (5) promoting the development, adaptation, and application of interventions and toolkits for infodemic management. Each workstream identifies research questions and highlights 49 high priority research questions.
Conclusions: Public health authorities need to develop, validate, implement, and adapt tools and interventions for managing infodemics in acute public health events in ways that are appropriate for their countries and contexts. Infodemiology provides a scientific foundation to make this possible. This research agenda proposes a structured framework for targeted investment for the scientific community, policy makers, implementing organizations, and other stakeholders to consider.
MATERIALS AND METHODS: A 56-question online survey covering various aspects of the evaluation and management of NOA was sent to specialists around the globe. This paper analyzes the results of the second half of the survey dealing with the management of NOA. Results have been compared to current guidelines, and expert recommendations have been provided using a Delphi process.
RESULTS: Participants from 49 countries submitted 336 valid responses. Hormonal therapy for 3 to 6 months was suggested before surgical sperm retrieval (SSR) by 29.6% and 23.6% of participants for normogonadotropic hypogonadism and hypergonadotropic hypogonadism respectively. The SSR rate was reported as 50.0% by 26.0% to 50.0% of participants. Interestingly, 46.0% reported successful SSR in <10% of men with Klinefelter syndrome and 41.3% routinely recommended preimplantation genetic testing. Varicocele repair prior to SSR is recommended by 57.7%. Half of the respondents (57.4%) reported using ultrasound to identify the most vascularized areas in the testis for SSR. One-third proceed directly to microdissection testicular sperm extraction (mTESE) in every case of NOA while others use a staged approach. After a failed conventional TESE, 23.8% wait for 3 months, while 33.1% wait for 6 months before proceeding to mTESE. The cut-off of follicle-stimulating hormone for positive SSR was reported to be 12-19 IU/mL by 22.5% of participants and 20-40 IU/mL by 27.8%, while 31.8% reported no upper limit.
CONCLUSIONS: This is the largest survey to date on the real-world medical and surgical management of NOA by reproductive experts. It demonstrates a diverse practice pattern and highlights the need for evidence-based international consensus guidelines.
MATERIALS AND METHODS: A 56-item questionnaire survey on NOA diagnosis and management was conducted globally from July to September 2022. This paper focuses on part 1, evaluating NOA diagnosis. Data from 367 participants across 49 countries were analyzed descriptively, with a Delphi process used for expert recommendations.
RESULTS: Of 336 eligible responses, most participants were experienced attending physicians (70.93%). To diagnose azoospermia definitively, 81.7% requested two semen samples. Commonly ordered hormone tests included serum follicle-stimulating hormone (FSH) (97.0%), total testosterone (92.9%), and luteinizing hormone (86.9%). Genetic testing was requested by 66.6%, with karyotype analysis (86.2%) and Y chromosome microdeletions (88.3%) prevalent. Diagnostic testicular biopsy, distinguishing obstructive azoospermia (OA) from NOA, was not performed by 45.1%, while 34.6% did it selectively. Differentiation relied on physical examination (76.1%), serum hormone profiles (69.6%), and semen tests (68.1%). Expectations of finding sperm surgically were higher in men with normal FSH, larger testes, and a history of sperm in ejaculate.
CONCLUSIONS: This expert survey, encompassing 367 participants from 49 countries, unveils congruence with recommended guidelines in NOA diagnosis. However, noteworthy disparities in practices suggest a need for evidence-based, international consensus guidelines to standardize NOA evaluation, addressing existing gaps in professional recommendations.