Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Naini AA, Mayanti T, Harneti D, Darwati, Nurlelasari, Maharani R, et al.
    Phytochemistry, 2023 Jan;205:113477.
    PMID: 36283447 DOI: 10.1016/j.phytochem.2022.113477
    Two undescribed sesquiterpenoids, namely dysoticans A and B, and three undescribed sesquiterpenoid dimers, namely dysoticans C-E, together with six analogs, were isolated from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae), growing in West Java, Indonesia. Their structures were elucidated based on extensive spectroscopic analysis and theoretical simulations of ECD spectra and 13C NMR shifts. Dysoticans A and B possessed undescribed cadinanes with minor modifications, while C and D featured unprecedented pseudo-sesquiterpenoid dimers through O-ether linkages of cadinanes and guaianes, respectively. Dysotican E was also characterized as the true-sesquiterpenoid dimer featuring eudesmane-germacrene hybrid framework from the Meliaceae family. Furthermore, A-C and E showed moderate activities against the human breast cancer MCF-7 and cervical cancer HeLa cell lines with IC50 values ranging from 22.15 to 45.14 μM. D selectively exhibited significant cytotoxicity against the HeLa cell line with an IC50 value of 13.00 ± 0.13 μM.
  2. Irfandi R, Raya I, Ahmad A, Fudholi A, Riswandi, Santi S, et al.
    Mol Divers, 2023 Oct 27.
    PMID: 37884781 DOI: 10.1007/s11030-023-10747-y
    Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.
  3. Nurlelasari, Parulian SS, Naini AA, Hilmayanti E, Farabi K, Harneti D, et al.
    J Asian Nat Prod Res, 2023;25(8):803-809.
    PMID: 36409205 DOI: 10.1080/10286020.2022.2143353
    Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.
  4. Khalili NSD, Khawory MH, Salin NH, Zakaria II, Hariono M, Mikhaylov AA, et al.
    Heliyon, 2024 Jan 30;10(2):e24202.
    PMID: 38293469 DOI: 10.1016/j.heliyon.2024.e24202
    A series of new imidazole-phenazine derivatives were synthesized via a two-step process. The condensation of 2,3-diaminophenazine and benzaldehyde derivatives proceeds with intermediate formation of an aniline Schiff base, which undergoes subsequent cyclodehydrogenation in situ. The structures of the synthesized compounds were characterized by 1D and 2D NMR, FTIR and HRMS. A total of thirteen imidazole phenazine derivatives were synthesized and validated for their inhibitory activity as anti-dengue agents by an in vitro DENV2 NS2B-NS3 protease assay using a fluorogenic Boc-Gly-Arg-Arg-AMC substrate. Two para-substituted imidazole phenazines, 3e and 3k, were found to be promising lead molecules for novel NS2B-NS3 protease inhibitors with IC50 of 54.8 μM and 71.9 μM, respectively, compared to quercetin as a control (IC50 104.8 μM). The in silico study was performed using AutoDock Vina to identify the binding energy and conformation of 3e and 3k with the active site of the DENV2 NS2B-NS3 protease Wichapong model. The results indicate better binding properties of 3e and 3k with calculated binding energies of -8.5 and -8.4 kcal mol-1, respectively, compared to the binding energy of quercetin of -7.2 kcal mol-1, which corroborates well with the experimental observations.
  5. Mohd Radzuan SN, Phongphane L, Abu Bakar MH, Che Omar MT, Nor Shahril NS, Supratman U, et al.
    RSC Adv, 2024 Feb 29;14(11):7684-7698.
    PMID: 38444963 DOI: 10.1039/d3ra08642a
    New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 μM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 μM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 μM) and α-glucosidase (IC50 = 31.6 ± 0.4 μM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
  6. Raya I, Kartina D, Wijaya RI, Irfandi R, Abdalrazaq EA, Prihantono P, et al.
    Asian Pac J Cancer Prev, 2023 Dec 01;24(12):4155-4165.
    PMID: 38156851 DOI: 10.31557/APJCP.2023.24.12.4155
    OBJECTIVE: Cervical cancer is a malignancy originating from the cervix and often caused by oncogenic Human Papilloma Virus (HPV), specifically subtypes 16 and 18. Anticancer drugs are chemotherapeutic compounds used for cancer treatment. Therefore, this research aims to synthesize and characterize Zinc (II) dichloroethylenediamine (Zn(en)Cl2) complex, as well as determine its antiproliferative activity against HeLa cells. The Zn(en)Cl2 complex was successfully synthesized, and the antiproliferative activity was tested.

    METHODS: The synthesis involved reacting ethylenediamine and KCl with Zn metal. The complex formed was characterized using a conductometer, UV-Vis spectroscopy, FT-IR spectroscopy, and XRD, while the activity was measured against HeLa cells.

    RESULT: The synthesis yielded a 56.12% conversion with a melting point of 198-200 oC and a conductivity value of 2.02 mS/cm. The Zn(en)Cl2 complex showed potential activity against HeLa cells with an IC50 value of 898.35 µg/mL, which was evidenced by changes in the morphological structure of HeLa cells. Its interaction with DNA targets was investigated by employing molecular docking.

    CONCLUSION: The observed data indicated that the Zn(en)Cl2 complex bound to DNA at the nitrogenous base Guanine (DG) by coordinate covalent bonds. Interestingly, DG maintained interaction with the complex until the end of the docking simulation. Additionally, molecular dynamics (MD) simulation was conducted, and the results showed that Zn(en)Cl2 remained bound to the DNA binding pocket all through the process.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links