Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Azwani F, Suzuki K, Honjyo M, Tashiro Y, Futamata H
    Genome Announc, 2017 Sep 07;5(36).
    PMID: 28883136 DOI: 10.1128/genomeA.00875-17
    Comamonas testosteroni strain R2 was isolated from a continuous culture enriched by a low concentration of phenol-oxygenating activities with low Ks values (below 1 μM). The draft genome sequence of C. testosteroni strain R2 reported here may contribute to determining the phenol degradation gene cluster.
  2. Akaza H, Hirao Y, Kim CS, Oya M, Ozono S, Ye D, et al.
    Prostate Int, 2016 Sep;4(3):88-96.
    PMID: 27689065 DOI: 10.1016/j.prnil.2016.03.001
    The Asian Prostate Cancer (A-CaP) Study is an Asia-wide initiative that has been developed over the course of 2 years. The A-CaP Study is scheduled to begin in 2016, when each participating country or region will begin registration of newly diagnosed prostate cancer patients and conduct prognosis investigations. From the data gathered, common research themes will be identified, such as comparisons among Asian countries of background factors in newly diagnosed prostate cancer patients. This is the first Asia-wide study of prostate cancer and has developed from single country research efforts in this field, including in Japan and Korea. The inaugural Board Meeting of A-CaP was held on December 11, 2015 at the Research Center for Advanced Science and Technology, The University of Tokyo, attended by representatives of all participating countries and regions, who signed a memorandum of understanding concerning registration for A-CaP. Following the Board Meeting an A-CaP Launch Symposium was held. The symposium was attended by representatives of countries and regions participating in A-CaP, who gave presentations. Presentations and a keynote address were also delivered by representatives of the University of California San Francisco, USA, and the Peter MacCallum Cancer Centre, Australia, who provided insight and experience on similar databases compiled in their respective countries.
  3. Suzuki K, Aziz FA, Inuzuka Y, Tashiro Y, Futamata H
    Genome Announc, 2016;4(5).
    PMID: 27660772 DOI: 10.1128/genomeA.00948-16
    Pseudomonas sp. LAB-08 was isolated from a phenol-fed bioreactor constructed with contaminated aquifer soil as the inoculum. Strain LAB-08 utilized phenol as a sole carbon and energy source. Here, we report the genome sequence and annotation of Pseudomonas sp. LAB-08.
  4. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  5. Aziz FA, Suzuki K, Ohtaki A, Sagegami K, Hirai H, Seno J, et al.
    Front Microbiol, 2015;6:1148.
    PMID: 26539177 DOI: 10.3389/fmicb.2015.01148
    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and "interspecies interaction," were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, "interspecies interaction," a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem.
  6. Calingacion M, Laborte A, Nelson A, Resurreccion A, Concepcion JC, Daygon VD, et al.
    PLoS One, 2014;9(1):e85106.
    PMID: 24454799 DOI: 10.1371/journal.pone.0085106
    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.
  7. Uni S, Bain O, Suzuki K, Agatsuma T, Harada M, Motokawa M, et al.
    Parasitol Int, 2013 Feb;62(1):14-23.
    PMID: 22926421 DOI: 10.1016/j.parint.2012.08.004
    Acanthocheilonema delicata n. sp. (Filarioidea: Onchocercidae: Onchocercinae) is described based on adult filarioids and microfilariae obtained from subcutaneous connective tissues and skin, respectively, of Japanese badgers (Meles anakuma) in Wakayama Prefecture, Japan. No endemic species of the genus had been found in Japan. Recently, some filarioids (e.g., Acanthocheilonema reconditum, Dirofilaria spp., and Onchocerca spp.) have come to light as causative agents of zoonosis worldwide. The new species was readily distinguished from its congeners by morphologic characteristics such as body length, body width, esophagus length, spicule length, and the length of microfilariae. Based on the molecular data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, A. delicata n. sp. was included in the clade of the genus Acanthocheilonema but differed from two other congeneric species available for study, A. viteae and A. reconditum. Acanthocheilonema delicata n. sp. did not harbor Wolbachia. It is likely that the fauna of filarioids from mammals on the Japanese islands is characterized by a high level of endemicity.
  8. Shintani M, Minaguchi K, Suzuki K, Lim KA
    Biochem Genet, 1990 Apr;28(3-4):173-84.
    PMID: 2383244
    Three new variants of acidic proline-rich proteins (At, Au, Aw) were found in human parotid saliva by isoelectric focusing and basic gel electrophoresis. Electrophoretic comparison of the purified proteins and their tryptic peptides suggested minor charge and size differences from other acidic PRPs. Genetic and biochemical studies indicate that the At and Aw proteins are allelic products of the PRH1 locus. Gene frequencies of the At productive allele (PRH1(6)) in Japanese, Chinese, and Malays were 0.008, 0.012, and 0.004, respectively. The Au protein was also found in Japanese (2 in 746 samples), Chinese (1 in 215 samples), and Malays (1 in 220 samples), however, the Aw protein was found only in one Japanese (n = 746). These three proteins were not found in 106 Indian subjects.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links