Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Chew WX, Kaizu K, Watabe M, Muniandy SV, Takahashi K, Arjunan SNV
    Phys Rev E, 2019 Apr;99(4-1):042411.
    PMID: 31108654 DOI: 10.1103/PhysRevE.99.042411
    Microscopic models of reaction-diffusion processes on the cell membrane can link local spatiotemporal effects to macroscopic self-organized patterns often observed on the membrane. Simulation schemes based on the microscopic lattice method (MLM) can model these processes at the microscopic scale by tracking individual molecules, represented as hard spheres, on fine lattice voxels. Although MLM is simple to implement and is generally less computationally demanding than off-lattice approaches, its accuracy and consistency in modeling surface reactions have not been fully verified. Using the Spatiocyte scheme, we study the accuracy of MLM in diffusion-influenced surface reactions. We derive the lattice-based bimolecular association rates for two-dimensional (2D) surface-surface reaction and one-dimensional (1D) volume-surface adsorption according to the Smoluchowski-Collins-Kimball model and random walk theory. We match the time-dependent rates on lattice with off-lattice counterparts to obtain the correct expressions for MLM parameters in terms of physical constants. The expressions indicate that the voxel size needs to be at least 0.6% larger than the molecule to accurately simulate surface reactions on triangular lattice. On square lattice, the minimum voxel size should be even larger, at 5%. We also demonstrate the ability of MLM-based schemes such as Spatiocyte to simulate a reaction-diffusion model that involves all dimensions: three-dimensional (3D) diffusion in the cytoplasm, 2D diffusion on the cell membrane, and 1D cytoplasm-membrane adsorption. With the model, we examine the contribution of the 2D reaction pathway to the overall reaction rate at different reactant diffusivity, reactivity, and concentrations.
  2. Rahman NA, Katayama T, Wahid MEA, Kasan NA, Khatoon H, Yamada Y, et al.
    Front Bioeng Biotechnol, 2020;8:581628.
    PMID: 33330417 DOI: 10.3389/fbioe.2020.581628
    Antioxidants found in microalgae play an essential role in both animals and humans, against various diseases and aging processes by protecting cells from oxidative damage. In this study, 26 indigenous tropical marine microalgae were screened. Out of the 26 screened strains, 10 were selected and were further investigated for their natural antioxidant compounds which include carotenoids, phenolics, and fatty acids collected in their exponential and stationary phases. The antioxidant capacity was also evaluated by a total of four assays, which include ABTS, DPPH, superoxide radical (O2•-) scavenging capacity, and nitric oxide (•NO-) scavenging capacity. This study revealed that the antioxidant capacity of the microalgae varied between divisions, strains, and growth phase and was also related to the content of antioxidant compounds present in the cells. Carotenoids and phenolics were found to be the major contributors to the antioxidant capacity, followed by polyunsaturated fatty acids linoleic acid (LA), eicosapentaenoic acid (EPA), arachidonic acid (ARA), and docosahexaenoic acid (DHA) compared to other fatty acids. The antioxidant capacity of the selected bacillariophytes and haptophytes was found to be positively correlated to phenolic (R2-value = 0.623, 0.714, and 0.786 with ABTS, DPPH, and •NO-) under exponential phase, and to carotenoid fucoxanthin and β-carotene (R2 value = 0.530, 0.581 with ABTS, and 0.710, 0.795 with O2•-) under stationary phase. Meanwhile, antioxidant capacity of chlorophyte strains was positively correlated with lutein, β-carotene and zeaxanthin under the exponential phase (R2 value = 0.615, 0.615, 0.507 with ABTS, and R2 value = 0.794, 0.659, and 0.509 with •NO-). In the stationary phase, chlorophyte strains were positively correlated with violaxanthin (0.755 with •NO-), neoxanthin (0.623 with DPPH, 0.610 with •NO-), and lutein (0.582 with •NO-). This study showed that antioxidant capacity and related antioxidant compound production of tropical microalgae strains are growth phase-dependent. The results can be used to improve the microalgal antioxidant compound production for application in pharmaceutical, nutraceutical, food, and feed industry.
  3. Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al.
    JAMA Oncol, 2015 Jul;1(4):505-27.
    PMID: 26181261 DOI: 10.1001/jamaoncol.2015.0735
    IMPORTANCE: Cancer is among the leading causes of death worldwide. Current estimates of cancer burden in individual countries and regions are necessary to inform local cancer control strategies.

    OBJECTIVE: To estimate mortality, incidence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs) for 28 cancers in 188 countries by sex from 1990 to 2013.

    EVIDENCE REVIEW: The general methodology of the Global Burden of Disease (GBD) 2013 study was used. Cancer registries were the source for cancer incidence data as well as mortality incidence (MI) ratios. Sources for cause of death data include vital registration system data, verbal autopsy studies, and other sources. The MI ratios were used to transform incidence data to mortality estimates and cause of death estimates to incidence estimates. Cancer prevalence was estimated using MI ratios as surrogates for survival data; YLDs were calculated by multiplying prevalence estimates with disability weights, which were derived from population-based surveys; YLLs were computed by multiplying the number of estimated cancer deaths at each age with a reference life expectancy; and DALYs were calculated as the sum of YLDs and YLLs.

    FINDINGS: In 2013 there were 14.9 million incident cancer cases, 8.2 million deaths, and 196.3 million DALYs. Prostate cancer was the leading cause for cancer incidence (1.4 million) for men and breast cancer for women (1.8 million). Tracheal, bronchus, and lung (TBL) cancer was the leading cause for cancer death in men and women, with 1.6 million deaths. For men, TBL cancer was the leading cause of DALYs (24.9 million). For women, breast cancer was the leading cause of DALYs (13.1 million). Age-standardized incidence rates (ASIRs) per 100 000 and age-standardized death rates (ASDRs) per 100 000 for both sexes in 2013 were higher in developing vs developed countries for stomach cancer (ASIR, 17 vs 14; ASDR, 15 vs 11), liver cancer (ASIR, 15 vs 7; ASDR, 16 vs 7), esophageal cancer (ASIR, 9 vs 4; ASDR, 9 vs 4), cervical cancer (ASIR, 8 vs 5; ASDR, 4 vs 2), lip and oral cavity cancer (ASIR, 7 vs 6; ASDR, 2 vs 2), and nasopharyngeal cancer (ASIR, 1.5 vs 0.4; ASDR, 1.2 vs 0.3). Between 1990 and 2013, ASIRs for all cancers combined (except nonmelanoma skin cancer and Kaposi sarcoma) increased by more than 10% in 113 countries and decreased by more than 10% in 12 of 188 countries.

    CONCLUSIONS AND RELEVANCE: Cancer poses a major threat to public health worldwide, and incidence rates have increased in most countries since 1990. The trend is a particular threat to developing nations with health systems that are ill-equipped to deal with complex and expensive cancer treatments. The annual update on the Global Burden of Cancer will provide all stakeholders with timely estimates to guide policy efforts in cancer prevention, screening, treatment, and palliation.

  4. Lum WM, Benico G, Doan-Nhu H, Furio E, Leaw CP, Leong SCY, et al.
    Harmful Algae, 2021 07;107:102070.
    PMID: 34456025 DOI: 10.1016/j.hal.2021.102070
    Red tides and associated fisheries damage caused by the harmful raphidophyte Chattonella were reassessed based on the documented local records for 50 years to understand the distribution and economic impacts of the harmful species in the Western Pacific. Blooms of Chattonella with fisheries damage have been recorded in East Asia since 1969, whereas they have been only recorded in Southeast Asia since the 1980s. Occurrences of Chattonella have been documented from six Southeast Asian countries, Indonesia, Malaysia, Philippines, Singapore, Thailand and Viet Nam, with mass mortalities mainly of farmed shrimp in 1980-1990s, and farmed fish in 2000-2010s. These occurrences have been reported with the names of C. antiqua, C. marina, C. ovata, C. subsalsa and Chattonella sp., owing to the difficulty of microscopic species identification, and many were not supported with molecular data. To determine the distribution of C. marina complex and C. subsalsa in Southeast Asia, molecular phylogeny and microscopic observation were also carried out for cultures obtained from Indonesia, Malaysia, Japan, Philippines, Russia, Singapore and Thailand. The results revealed that only the genotype of C. marina complex has been detected from East Asia (China, Japan, Korea and Russia), whereas both C. marina complex (Indonesia and Malaysia) and C. subsalsa (Philippines, Singapore and Thailand) were found in Southeast Asia. Ejection of mucocysts has been recognized as a diagnostic character of C. subsalsa, but it was also observed in our cultures of C. marina isolated from Indonesia, Malaysia, Japan, and Russia. Meanwhile, the co-occurrences of the two harmful Chattonella species in Southeast Asia, which are difficult to distinguish solely based on their morphology, suggest the importance of molecular identification of Chattonella genotypes for further understanding of their distribution and negative impacts.
  5. SahBandar IN, Takahashi K, Motomura K, Djoerban Z, Firmansyah I, Kitamura K, et al.
    AIDS Res Hum Retroviruses, 2011 Jan;27(1):97-102.
    PMID: 20958201 DOI: 10.1089/aid.2010.0163
    Cocirculation of subtype B and CRF01_AE in Southeast Asia has led to the establishment of new recombinant forms. In our previous study, we found five samples suspected of being recombinants between subtype B and CRF01_AE, and here, we analyzed near full-length sequences of two samples and compared them to known CRFs_01B, subtype B, and CRF01_AE. Five overlapped segments were amplified with nested PCR from PBMC DNA, sequenced, and analyzed for genome mosaicism. The two Indonesian samples, 07IDJKT189 and 07IDJKT194, showed genome-mosaic patterns similar to CRF33_01B references from Malaysia, with one short segment in the 3' end of the p31 integrase-coding region, which was rather more similar to subtype B than CRF01_AE, consisting of unclassified sequences. These results suggest gene-specific continuous diversification and spread of the CRF33_01B genomes in Southeast Asia.
  6. Wan Afifudeen CL, Aziz A, Wong LL, Takahashi K, Toda T, Abd Wahid ME, et al.
    Phytochemistry, 2021 Dec;192:112936.
    PMID: 34509143 DOI: 10.1016/j.phytochem.2021.112936
    The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.
  7. Afifudeen CLW, Loh SH, Wong LL, Aziz A, Takahashi K, Wahid MEA, et al.
    Data Brief, 2021 Dec;39:107607.
    PMID: 34869809 DOI: 10.1016/j.dib.2021.107607
    Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in M. gracile SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oil-inducing culture conditions. Present data consist of next generation RNA sequencing data of M. gracile SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and de novo assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in M. gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.
  8. Vishwakarma R, Rosmi MS, Takahashi K, Wakamatsu Y, Yaakob Y, Araby MI, et al.
    Sci Rep, 2017 03 02;7:43756.
    PMID: 28251997 DOI: 10.1038/srep43756
    Low-temperature growth, as well as the transfer free growth on substrates, is the major concern of graphene research for its practical applications. Here we propose a simple method to achieve the transfer free graphene growth on SiO2 covered Si (SiO2/Si) substrate at 250 °C based on a solid-liquid-solid reaction. The key to this approach is the catalyst metal, which is not popular for graphene growth by chemical vapor deposition. A catalyst metal film of 500 nm thick was deposited onto an amorphous C (50 nm thick) coated SiO2/Si substrate. The sample was then annealed at 250 °C under vacuum condition. Raman spectra measured after the removal of the catalyst by chemical etching showed intense G and 2D peaks together with a small D and intense SiO2 related peaks, confirming the transfer free growth of multilayer graphene on SiO2/Si. The domain size of the graphene confirmed by optical microscope and atomic force microscope was about 5 μm in an average. Thus, this approach will open up a new route for transfer free graphene growth at low temperatures.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links