Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Chow WZ, Nizam S, Ong LY, Ng KT, Chan KG, Takebe Y, et al.
    Genome Announc, 2014;2(2).
    PMID: 24675847 DOI: 10.1128/genomeA.00139-14
    A complex HIV-1 unique recombinant form involving subtypes CRF01_AE, B, and B' was recently identified from an injecting drug user in Malaysia. A total of 13 recombination breakpoints were mapped across the near-full-length genome of isolate 10MYPR226, indicating the increasingly diverse molecular epidemiology and frequent linkage among various high-risk groups.
  2. Ng KT, Lee YM, Al-Darraji HA, Xia X, Takebe Y, Chan KG, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23409272 DOI: 10.1128/genomeA.00168-12
    We report the full genome sequence of hepatitis C virus (HCV) subtype 6n from Kuala Lumpur, Malaysia. Phylogenetic analysis of the isolate 10MYKJ032 suggests that Southeast Asia might be the origin for the HCV subtype 6n and highlights the possible spread of this lineage from Southeast Asia to other regions.
  3. Cheong HT, Ng KT, Ong LY, Takebe Y, Chan KG, Koh C, et al.
    Genome Announc, 2015;3(6).
    PMID: 26543107 DOI: 10.1128/genomeA.01220-15
    Three strains of HIV-1 unique recombinant forms (URFs) descended from subtypes B, B', and CRF01_AE were identified among people who inject drugs in Kuala Lumpur, Malaysia. These three URFs shared a common recombination breakpoint in the reverse transcriptase region, indicating frequent linkage within the drug-injecting networks in Malaysia.
  4. Tee KK, Bon AH, Chow WZ, Ng KT, Chan KG, Kamarulzaman A, et al.
    Genome Announc, 2017 Jun 29;5(26).
    PMID: 28663289 DOI: 10.1128/genomeA.00459-17
    We report here the first HIV-1 circulating recombinant form (CRF) complex identified among the blood donors in Malaysia. The CRF77_cpx mosaic genome consists of parental subtypes B', C, and CRF01_AE and is structurally related to CRF07_BC. The identification of CRF77_cpx underlines the genetic complexity and mobility of HIV-1 among the blood donors.
  5. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
  6. Ng KT, Oong XY, Lim SH, Chook JB, Takebe Y, Chan YF, et al.
    Clin Infect Dis, 2018 07 02;67(2):261-268.
    PMID: 29385423 DOI: 10.1093/cid/ciy063
    Background: Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear.

    Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014.

    Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate.

    Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.

  7. Supian NI, Ng KT, Chook JB, Takebe Y, Chan KG, Tee KK
    BMC Infect Dis, 2021 May 17;21(1):446.
    PMID: 34001016 DOI: 10.1186/s12879-021-06148-x
    BACKGROUND: Coxsackievirus A21 (CVA21), a member of Enterovirus C from the Picornaviridae family, has been associated with respiratory illnesses in humans.

    METHODS: A molecular epidemiological investigation of CVA21 was conducted among patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014 in Kuala Lumpur, Malaysia.

    RESULTS: Epidemiological surveillance of acute respiratory infections (n = 3935) showed low-level detection of CVA21 (0.08%, 1.4 cases/year) in Kuala Lumpur, with no clear seasonal distribution. Phylogenetic analysis of the new complete genomes showed close relationship with CVA21 strains from China and the United States. Spatio-temporal mapping of the VP1 gene determined 2 major clusters circulating worldwide, with inter-country lineage migration and strain replacement occurring over time.

    CONCLUSIONS: The study highlights the emerging role of CVA21 in causing sporadic acute respiratory outbreaks.

  8. Ng KT, Takebe Y, Kamarulzaman A, Tee KK
    Arch Virol, 2021 Jan;166(1):225-229.
    PMID: 33084935 DOI: 10.1007/s00705-020-04855-5
    Genome sequences of members of a potential fourth rhinovirus (RV) species, provisionally denoted as rhinovirus A clade D, from patients with acute respiratory infection were determined. Bayesian coalescent analysis estimated that clade D emerged around the 1940s and diverged further around 2006-2007 into two distinctive sublineages (RV-A8-like and RV-A45-like) that harbored unique "clade-defining" substitutions. Similarity plots and bootscan mapping revealed a recombination breakpoint located in the 5'-UTR region of members of the RV-A8-like sublineage. Phylogenetic reconstruction revealed the distribution of clade D viruses in the Asia Pacific region and in Europe, underlining its worldwide distribution.
  9. Weniger BG, Takebe Y, Ou CY, Yamazaki S
    AIDS, 1994;8 Suppl 2:S13-28.
    PMID: 7857556
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links