Displaying publications 21 - 40 of 67 in total

Abstract:
Sort:
  1. Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S
    Infect Genet Evol, 2018 11;65:35-42.
    PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015
    The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p 
  2. Saleh Huddin A, Md Yusuf N, Razak MRMA, Ogu Salim N, Hisam S
    Infect Genet Evol, 2019 11;75:103952.
    PMID: 31279818 DOI: 10.1016/j.meegid.2019.103952
    It has been discovered that Plasmodium knowlesi (P. knowlesi) is transmitted from macaque to man. Thus, the aim of the present study was to determine P. knowlesi genetic diversity in both human (n = 147) and long-tailed macaque (n = 26) samples from high- and low-endemicity localities. Genotyping was performed using seven neutral microsatellite loci markers. The size of the alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (HE), linkage disequilibrium (LD), and genetic differentiation (FST) were determined. In highly endemic P. knowlesi localities, the MOI for human and long-tailed macaque isolates was 1.04 and 1.15, respectively, while the Na was 11.14 and 7.86, respectively. Based on the allele frequency distribution for all loci, and with FST 
  3. Saleemi MA, Ahmad B, Benchoula K, Vohra MS, Mea HJ, Chong PP, et al.
    Infect Genet Evol, 2020 11;85:104583.
    PMID: 33035643 DOI: 10.1016/j.meegid.2020.104583
    The emergence of a new coronavirus, in around late December 2019 which had first been reported in Wuhan, China has now developed into a massive threat to global public health. The World Health Organization (WHO) has named the disease caused by the virus as COVID-19 and the virus which is the culprit was renamed from the initial novel respiratory 2019 coronavirus to SARS-CoV-2. The person-to-person transmission of this virus is ongoing despite drastic public health mitigation measures such as social distancing and movement restrictions implemented in most countries. Understanding the source of such an infectious pathogen is crucial to develop a means of avoiding transmission and further to develop therapeutic drugs and vaccines. To identify the etiological source of a novel human pathogen is a dynamic process that needs comprehensive and extensive scientific validations, such as observed in the Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS), and human immunodeficiency virus (HIV) cases. In this context, this review is devoted to understanding the taxonomic characteristics of SARS-CoV-2 and HIV. Herein, we discuss the emergence and molecular mechanisms of both viral infections. Nevertheless, no vaccine or therapeutic drug is yet to be approved for the treatment of SARS-CoV-2, although it is highly likely that new effective medications that target the virus specifically will take years to establish. Therefore, this review reflects the latest repurpose of existing antiviral therapeutic drug choices available to combat SARS-CoV-2.
  4. Putaporntip C, Kuamsab N, Jongwutiwes S
    Infect Genet Evol, 2016 Oct;44:367-375.
    PMID: 27480919 DOI: 10.1016/j.meegid.2016.07.040
    Plasmodium knowlesi and P. cynomolgi are simian malaria parasites capable of causing symptomatic human infections. The interaction between the Duffy binding protein alpha on P. knowlesi merozoite and the Duffy-antigen receptor for chemokine (DARC) on human and macaque erythrocyte membrane is prerequisite for establishment of blood stage infection whereas DARC is not required for erythrocyte invasion by P. cynomolgi. To gain insights into the evolution of the PkDBP gene family comprising PkDBPα, PkDBPβ and PkDBPγ, and a member of the DBP gene family of P. cynomolgi (PcyDBP1), the complete coding sequences of these genes were analyzed from Thai field isolates and compared with the publicly available DBP sequences of P. vivax (PvDBP). The complete coding sequences of PkDBPα (n=11), PkDBPβ (n=11), PkDBPγ (n=10) and PcyDBP1 (n=11) were obtained from direct sequencing of the PCR products. Nucleotide diversity of DBP is highly variable across malaria species. PcyDBP1 displayed the greatest level of nucleotide diversity while all PkDBP gene members exhibited comparable levels of diversity. Positive selection occurred in domains I, II and IV of PvDBP and in domain V of PcyDBP1. Although deviation from neutrality was not detected in domain II of PkDBPα, a signature of positive selection was identified in the putative DARC binding site in this domain. The DBP gene families seem to have arisen following the model of concerted evolution because paralogs rather than orthologs are clustered in the phylogenetic tree. The presence of identical or closely related repeats exclusive for the PkDBP gene family suggests that duplication of gene members postdated their divergence from the ancestral PcyDBP and PvDBP lineages. Intragenic recombination was detected in all DBP genes of these malaria species. Despite the limited number of isolates, P. knowlesi from Thailand shared phylogenetically related domain II sequences of both PkDBPα and PkDBPγ with those from Peninsular Malaysia, consistent with their geographic proximity.
  5. Paquette AM, Harahap A, Laosombat V, Patnode JM, Satyagraha A, Sudoyo H, et al.
    Infect Genet Evol, 2015 Aug;34:153-9.
    PMID: 26047685 DOI: 10.1016/j.meegid.2015.06.002
    Southeast Asian Ovalocytosis (SAO) is a common red blood cell disorder that is maintained as a balanced polymorphism in human populations. In individuals heterozygous for the SAO-causing mutation there are minimal detrimental effects and well-documented protection from severe malaria caused by Plasmodium vivax and Plasmodium falciparum; however, the SAO-causing mutation is fully lethal in utero when homozygous. The present-day high frequency of SAO in Island Southeast Asia indicates the trait is maintained by strong heterozygote advantage. Our study elucidates the evolutionary origin of SAO by characterizing DNA sequence variation in a 9.5 kilobase region surrounding the causal mutation in the SLC4A1 gene. We find substantial haplotype diversity among SAO chromosomes and estimate the age of the trait to be approximately 10,005 years (95% CI: 4930-23,200 years). This date is far older than any other human malaria-resistance trait examined previously in Southeast Asia, and considerably pre-dates the widespread adoption of agriculture associated with the spread of speakers of Austronesian languages some 4000 years ago. Using a genealogy-based method we find no evidence of historical positive selection acting on SAO (s=0.0, 95% CI: 0.0-0.03), in sharp contrast to the strong present-day selection coefficient (e.g., 0.09) estimated from the frequency of this recessively lethal trait. This discrepancy may be due to a recent increase in malaria-driven selection pressure following the spread of agriculture, with SAO targeted as a standing variant by positive selection in malarial populations.
  6. Panda S, Banik U, Adhikary AK
    Infect Genet Evol, 2020 11;85:104439.
    PMID: 32585339 DOI: 10.1016/j.meegid.2020.104439
    Human adenovirus type 3 (HAdV-3) encompasses 15-87% of all adenoviral respiratory infections. The significant morbidity and mortality, especially among the neonates and immunosuppressed patients, demand the need for a vaccine or a targeted antiviral against this type. However, due to the existence of multiple hexon variants (3Hv-1 to 3Hv-25), the selection of vaccine strains of HAdV-3 is challenging. This study was designed to evaluate HAdV-3 hexon variants for the selection of potential vaccine candidates and the use of hexon gene as a target for designing siRNA that can be used as a therapy. Based on the data of worldwide distribution, duration of circulation, co-circulation and their percentage among all the variants, 3Hv-1 to 3Hv-4 were categorized as the major hexon variants. Phylogenetic analysis and the percentage of homology in the hypervariable regions followed by multi-sequence alignment, zPicture analysis and restriction enzyme analysis were carried out. In the phylogram, the variants were arranged in different clusters. The HVR encoding regions of hexon of 3Hv-1 to 3Hv-4 showed 16 point mutations resulting in 12 amino acids substitutions. The homology in HVRs was 81.81-100%. Therefore, the major hexon variants are substantially different from each other which justifies their inclusion as the potential vaccine candidates. Interestingly, despite the significant differences in the DNA sequence, there were many conserved areas in the HVRs, and we have designed functional siRNAs form those locations. We have also designed immunogenic vaccine peptide epitopes from the hexon protein using bioinformatics prediction tool. We hope that our developed siRNAs and immunogenic vaccine peptide epitopes could be used in the future development of siRNA-based therapy and designing a vaccine against HAdV-3.
  7. Nikolopoulos GK, Kostaki EG, Paraskevis D
    Infect Genet Evol, 2016 Dec;46:256-268.
    PMID: 27287560 DOI: 10.1016/j.meegid.2016.06.017
    HIV strains continuously evolve, tend to recombine, and new circulating variants are being discovered. Novel strains complicate efforts to develop a vaccine against HIV and may exhibit higher transmission efficiency and virulence, and elevated resistance to antiretroviral agents. The United Nations Joint Programme on HIV/AIDS (UNAIDS) set an ambitious goal to end HIV as a public health threat by 2030 through comprehensive strategies that include epidemiological input as the first step of the process. In this context, molecular epidemiology becomes invaluable as it captures trends in HIV evolution rates that shape epidemiological pictures across several geographical areas. This review briefly summarizes the molecular epidemiology of HIV among people who inject drugs (PWID) in Europe and Asia. Following high transmission rates of subtype G and CRF14_BG among PWID in Portugal and Spain, two European countries, Greece and Romania, experienced recent HIV outbreaks in PWID that consisted of multiple transmission clusters including subtypes B, A, F1, and recombinants CRF14_BG and CRF35_AD. The latter was first identified in Afghanistan. Russia, Ukraine, and other Former Soviet Union (FSU) states are still facing the devastating effects of epidemics in PWID produced by AFSU (also known as IDU-A), BFSU (known as IDU-B), and CRF03_AB. In Asia, CRF01_AE and subtype B (Western B and Thai B) travelled from PWID in Thailand to neighboring countries. Recombination hotspots in South China, Northern Myanmar, and Malaysia have been generating several intersubtype and inter-CRF recombinants (e.g. CRF07_BC, CRF08_BC, CRF33_01B etc.), increasing the complexity of HIV molecular patterns.
  8. Niek WK, Teh CSJ, Idris N, Sit PS, Lee YQ, Thong KL, et al.
    Infect Genet Evol, 2020 11;85:104567.
    PMID: 32980576 DOI: 10.1016/j.meegid.2020.104567
    Methicillin-resistant Staphylococcus aureus (MRSA) is a prominent pathogen causing invasive infections such as bacteraemia. The continued excessive use of antibiotics to treat MRSA infections has resulted in the evolution of antimicrobial resistant of S. aureus. This study aims to perform a comparative evaluation of changing trends in molecular epidemiology of MRSA and clinical characteristics of patients. This study shows that ST22-MRSA-IV has gradually replaced ST239-MRSA-III as the predominant MRSA clone in the tertiary teaching hospital studied. Independent predictors of mortality among patients included devices in situ at the time of infection, pre-exposure to macrolides, catheter-related bloodstream infection and mono-microbial infection. Hence, our study affirmed community-associated MRSA, which was previously identified from individuals without any exposure to healthcare settings, has now emerged in healthcare settings, causing healthcare-associated MRSA infections.
  9. Nguyen TH, Wang D, Rahman SU, Bai H, Yao X, Chen D, et al.
    Infect Genet Evol, 2021 06;90:104750.
    PMID: 33548490 DOI: 10.1016/j.meegid.2021.104750
    Rice tungro bacilliform virus (RTBV) belongs to genus Tungrovirus within the family Caulimoviridae harbors circular double-stranded DNA (dsDNA). Rice tungro disease (RTD) caused by RTBV, responsible for severe rice yield losses in South and Southeast Asia. Here, we performed a systematic evolutionary and codon usage bias (CUB) analysis of RTBV genome sequences. We analysed different bioinformatics techniques to calculate the nucleotide compositions, the relative synonymous codon usage (RSCU), and other indices. The results indicated slightly or low codon usage bias in RTBV isolates. Mutation and natural selection pressures have equally contributed to this low codon usage bias. Additionally, multiple factors such as host, geographical distribution also affect codon usage patterns in RTBV genomes. RSCU analysis revealed that RTBV shows mutation bias and prefers A and U ended codons to code amino acids. Codon usage patterns of RTBV were also found to be influenced by its host. This indicates that RTBV have evolved codon usage patterns that are specific to its host. The findings from this study are expected to increase our understanding of factors leading to viral evolution and fitness with respect to hosts and the environment.
  10. Ngoi ST, Yap KP, Thong KL
    Infect Genet Evol, 2018 08;62:109-121.
    PMID: 29684710 DOI: 10.1016/j.meegid.2018.04.027
    Salmonella enterica serovar Typhimurium (S. Typhimurium) and the monophasic variant Salmonella I 4,[5],12:i:- are two clinically-important non-typhoidal Salmonella serovars worldwide. However, the genomic information of these two organisms, especially the monophasic variant, is still lacking in Malaysia. The objective of the study was to compare the genomic features of a monophasic variant and two endemic S. Typhimurium strains isolated from humans. All three strains were subjected to whole genome sequencing followed by comparative genomic and phylogenetic analyses. Extensive genomic deletion in the fljAB operon (from STM2757 to iroB) is responsible for the monophasic phenotype of STM032/04. The two S. Typhimurium genomes (STM001/70 and STM057/05) were essentially identical, despite being isolated 35 years apart. All three strains were of sequence type ST19. Both S. Typhimurium genomes shared unique prophage regions not identified in the monophasic STM032/04 genome. Core genome phylogenetic analyses showed that the monophasic STM032/04 was closely-related to the S. Typhimurium LT2, forming a distinctive clade separated from the two endemic S. Typhimurium strains in Malaysia. The presence of serovar Typhimurium-specific mdh gene, conserved Gifsy and Fels-1 prophages, and the close genomic resemblance with S. Typhimurium LT2 suggested that the monophasic STM032/04 was originated from an LT2-like S. Typhimurium ancestor in Malaysia, following an evolutionary path different from the S. Typhimurium strains. In conclusion, the monophasic Salmonella I 4,[5],12:i:- and the S. Typhimurium strains isolated in Malaysia descended from different phylogenetic lineages. The high genomic resemblance between the two S. Typhimurium strains isolated for at least 35 years apart indicated their successful evolutionary lineage. The identification of multiple virulence and antimicrobial resistance determinants in the Salmonella I 4,[5],12:i:- and S. Typhimurium genomes explained the pathogenic nature of the organisms.
  11. Ng TS, Desa MNM, Sandai D, Chong PP, Than LTL
    Infect Genet Evol, 2016 06;40:331-338.
    PMID: 26358577 DOI: 10.1016/j.meegid.2015.09.004
    Glucose is an important fuel source to support many living organisms. Its importance in the physiological fitness and pathogenicity of Candida glabrata, an emerging human fungal pathogen has not been extensively studied. The present study aimed to investigate the effects of glucose on the growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of C. glabrata. In addition, its effect on the expression of a putative high affinity glucose sensor gene, SNF3 was also investigated. Glucose concentrations were found to exert effects on the physiological responses of C. glabrata. The growth rate of the species correlated positively to the amount of glucose. In addition, low glucose environments were found to induce C. glabrata to form biofilm and resist amphotericin B. Conversely, high glucose environments promoted oxidative stress resistance of C. glabrata. The expression of CgSNF3 was found to be significantly up-regulated in low glucose environments. The expression of SNF3 gene in clinical isolates was found to be higher compared to ATCC laboratory strains in low glucose concentrations, which may explain the better survivability of clinical isolates in the low glucose environment. These observations demonstrated the impact of glucose in directing the physiology and virulence fitness of C. glabrata through the possible modulation by SNF3 as a glucose sensor, which in turn aids the species to adapt, survive and thrive in hostile host environment.
  12. Neoh HM, Tan XE, Sapri HF, Tan TL
    Infect Genet Evol, 2019 10;74:103935.
    PMID: 31233781 DOI: 10.1016/j.meegid.2019.103935
    Pulsed-field gel electrophoresis (PFGE) is considered the "gold standard" for bacteria typing. The method involves enzyme restriction of bacteria DNA, separation of the restricted DNA bands using a pulsed-field electrophoresis chamber, followed by clonal assignment of bacteria based on PFGE banding patterns. Various PFGE protocols have been developed for typing different bacteria, leading it to be one of the most widely used methods for phylogenetic studies, food safety surveillance, infection control and outbreak investigations. On the other hand, as PFGE is lengthy and labourious, several PCR-based typing methods can be used as alternatives for research purposes. Recently, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and whole genome sequencing (WGS) have also been proposed for bacteria typing. In fact, as WGS provides more information, such as antimicrobial resistance and virulence of the tested bacteria in comparison to PFGE, more and more laboratories are currently transitioning from PFGE to WGS for bacteria typing. Nevertheless, PFGE will remain an affordable and relevant technique for small laboratories and hospitals in years to come.
  13. Morozova OV, Panov VV, Bakhvalova VN
    Infect Genet Evol, 2020 Jun;80:104187.
    PMID: 31927073 DOI: 10.1016/j.meegid.2020.104187
    Two dominant species of wild small rodents trapped in Novosibirsk region, South-Western Siberia, Russia differed in their susceptibility to the tick-borne encephalitis virus (TBEV) infection. TBEV RNA average detection rate for Northern red-backed vole Myodes rutilus (Pallas, 1779) (82.2 ± 5.8% blood samples and 63.1 ± 2.7% organ samples) significantly exceeded the corresponding values for the striped field mouse Apodemus agrarius (Pallas, 1771) (47.0 ± 8.7% blood and 24.5 ± 2.8% organ samples) (p <0.001). Innate immunity may be one of possible reasons of the differences. Th1 cytokine gene expression distinguished between M. rutilus (12.5 ± 8.5%) and A. agrarius (66.6 ± 11.4%), whereas Th2 cytokine frequencies were statistically similar (81.8 ± 12.2% and 100.0%, respectively). Polarization indexes (PI) of the innate immunity calculated as ratio of Th2 to Th1 cytokine RNA detection rates for both M. rutilus (6.5) and A. agrarius (1.5) suggested Th2 mainly humoral immune response against persistent TBEV in natural mammalian hosts. Therefore, the TBEV-induced antibodies were analyzed by ELISA and hemagglutination inhibition (HI) tests. The TBEV-specific antibodies were detected in 74.8 ± 4.3% sera of M. rutilus and 67.3 ± 6.8% of A. agrarius. Among them HI antibodies were found in 4.8 ± 2.1% of the same analyzed sera of M. rutilus and in 6.0 ± 3.4% blood samples of A. agrarius only. To model the TBEV persistence both M. rutilus and A. agrarius were infected with the suspensions of the TBEV-infected ticks with further observations during 4 subsequent months. Detection rate of the TBEV RNA and antigen E remained high during the whole period, however, pathogenic for laboratory suckling mice virus was isolated up to 8 days postinfection. At late stages of the persistent infection (1-4 months) the TBEV RNA detection rate in northern red-backed voles remained high 70.6 ± 7.9% whereas in striped field mice significantly declined to 26.7 ± 9.2% (p  .05) but Th1 cytokine mRNA detection rates were different (44.4 ± 12.5% and 85.7 ± 9.7%, respectively) (p 
  14. Mohd-Zain Z, Kamsani NH, Ahmad N, Clarke SC
    Infect Genet Evol, 2015 Dec;36:240-3.
    PMID: 26394107 DOI: 10.1016/j.meegid.2015.09.017
    The epidemiology of non-typeable Haemophilus influenzae (NTHi) remains poorly understood. We therefore sought to determine the genetic relationship of 25 NTHi isolated from various states in Malaysia using multilocus sequence typing (MLST). The majority of isolates were obtained from sputum. There were 24 novel sequence types (STs). Eight isolates were single-locus variants, the remainder being singletons. Clustering was not based on clinical site of isolation or geographical origin. Despite the limited number of isolates examined in this study, we demonstrate that NTHi isolates in Malaysia are diverse and warrant further investigation.
  15. Mohammed MA, Galbraith SE, Radford AD, Dove W, Takasaki T, Kurane I, et al.
    Infect Genet Evol, 2011 Jul;11(5):855-62.
    PMID: 21352956 DOI: 10.1016/j.meegid.2011.01.020
    Japanese encephalitis virus (JEV) is the most important cause of epidemic encephalitis worldwide but its origin is unknown. Epidemics of encephalitis suggestive of Japanese encephalitis (JE) were described in Japan from the 1870s onwards. Four genotypes of JEV have been characterised and representatives of each genotype have been fully sequenced. Based on limited information, a single isolate from Malaysia is thought to represent a putative fifth genotype. We have determined the complete nucleotide and amino acid sequence of Muar strain and compared it with other fully sequenced JEV genomes. Muar was the least similar, with nucleotide divergence ranging from 20.2 to 21.2% and amino acid divergence ranging from 8.5 to 9.9%. Phylogenetic analysis of Muar strain revealed that it does represent a distinct fifth genotype of JEV. We elucidated Muar signature amino acids in the envelope (E) protein, including E327 Glu on the exposed lateral surface of the putative receptor binding domain which distinguishes Muar strain from the other four genotypes. Evolutionary analysis of full-length JEV genomes revealed that the mean evolutionary rate is 4.35 × 10(-4) (3.4906 × 10(-4) to 5.303 × 10(-4)) nucleotides substitutions per site per year and suggests JEV originated from its ancestral virus in the mid 1500s in the Indonesia-Malaysia region and evolved there into different genotypes, which then spread across Asia. No strong evidence for positive selection was found between JEV strains of the five genotypes and the E gene has generally been subjected to strong purifying selection.
  16. Miller PJ, Haddas R, Simanov L, Lublin A, Rehmani SF, Wajid A, et al.
    Infect Genet Evol, 2015 Jan;29:216-29.
    PMID: 25445644 DOI: 10.1016/j.meegid.2014.10.032
    Virulent Newcastle disease virus (NDV) isolates from new sub-genotypes within genotype VII are rapidly spreading through Asia and the Middle East causing outbreaks of Newcastle disease (ND) characterized by significant illness and mortality in poultry, suggesting the existence of a fifth panzootic. These viruses, which belong to the new sub-genotypes VIIh and VIIi, have epizootic characteristics and do not appear to have originated directly from other genotype VII NDV isolates that are currently circulating elsewhere, but are related to the present and past Indonesian NDV viruses isolated from wild birds since the 80s. Viruses from sub-genotype VIIh were isolated in Indonesia (2009-2010), Malaysia (2011), China (2011), and Cambodia (2011-2012) and are closely related to the Indonesian NDV isolated in 2007, APMV1/Chicken/Karangasem, Indonesia (Bali-01)/2007. Since 2011 and during 2012 highly related NDV isolates from sub-genotype VIIi have been isolated from poultry production facilities and occasionally from pet birds, throughout Indonesia, Pakistan and Israel. In Pakistan, the viruses of sub-genotype VIIi have replaced NDV isolates of genotype XIII, which were commonly isolated in 2009-2011, and they have become the predominant sub-genotype causing ND outbreaks since 2012. In a similar fashion, the numbers of viruses of sub-genotype VIIi isolated in Israel increased in 2012, and isolates from this sub-genotype are now found more frequently than viruses from the previously predominant sub-genotypes VIId and VIIb, from 2009 to 2012. All NDV isolates of sub-genotype VIIi are approximately 99% identical to each other and are more closely related to Indonesian viruses isolated from 1983 through 1990 than to those of genotype VII, still circulating in the region. Similarly, in addition to the Pakistani NDV isolates of the original genotype XIII (now called sub-genotype XIIIa), there is an additional sub-genotype (XIIIb) that was initially detected in India and Iran. This sub-genotype also appears to have as an ancestor a NDV strain from an Indian cockatoo isolated in 1982. These data suggest the existence of a new panzootic composed of viruses of subgenotype VIIi and support our previous findings of co-evolution of multiple virulent NDV genotypes in unknown reservoirs, e.g. as recorded with the virulent NDV identified in Dominican Republic in 2008. The co-evolution of at least three different sub-genotypes reported here and the apparent close relationship of some of those genotypes from ND viruses isolated from wild birds, suggests that identifying wild life reservoirs may help predict new panzootics.
  17. Lorusso A, Teodori L, Leone A, Marcacci M, Mangone I, Orsini M, et al.
    Infect Genet Evol, 2015 Mar;30:55-58.
    PMID: 25497353 DOI: 10.1016/j.meegid.2014.12.006
    A novel member of the Pteropine Orthoreovirus species has been isolated and sequenced for the whole genome from flying foxes (Pteropus vampyrus) imported to Italy from Indonesia. The new isolate named Indonesia/2010 is genetically similar to Melaka virus which has been the first virus of this species to be shown to be responsible for human respiratory disease. Our findings highlight the importance of flying foxes as vectors of potentially zoonotic viruses and the biological hazard that lies in the import of animals from geographical areas that are ecologically diverse from Europe.
  18. Lim YA, Iqbal A, Surin J, Sim BL, Jex AR, Nolan MJ, et al.
    Infect Genet Evol, 2011 Jul;11(5):968-74.
    PMID: 21439404 DOI: 10.1016/j.meegid.2011.03.007
    Given the HIV epidemic in Malaysia, genetic information on opportunistic pathogens, such as Cryptosporidium and Giardia, in HIV/AIDS patients is pivotal to enhance our understanding of epidemiology, patient care, management and disease surveillance. In the present study, 122 faecal samples from HIV/AIDS patients were examined for the presence of Cryptosporidium oocysts and Giardia cysts using a conventional coproscopic approach. Such oocysts and cysts were detected in 22.1% and 5.7% of the 122 faecal samples, respectively. Genomic DNAs from selected samples were tested in a nested-PCR, targeting regions of the small subunit (SSU) of nuclear ribosomal RNA and the 60kDa glycoprotein (gp60) genes (for Cryptosporidium), and the triose-phosphate isomerase (tpi) gene (for Giardia), followed by direct sequencing. The sequencing of amplicons derived from SSU revealed that Cryptosporidium parvum was the most frequently detected species (64% of 25 samples tested), followed by C. hominis (24%), C. meleagridis (8%) and C. felis (4%). Sequencing of a region of gp60 identified C. parvum subgenotype IIdA15G2R1 and C. hominis subgenotypes IaA14R1, IbA10G2R2, IdA15R2, IeA11G2T3R1 and IfA11G1R2. Sequencing of amplicons derived from tpi revealed G. duodenalis assemblage A, which is of zoonotic importance. This is the first report of C. hominis, C. meleagridis and C. felis from Malaysian HIV/AIDS patients. Future work should focus on an extensive analysis of Cryptosporidium and Giardia in such patients as well as in domestic and wild animals, in order to improve the understanding of transmission patterns and dynamics in Malaysia. It would also be particularly interesting to establish the relationship among clinical manifestation, CD4 cell counts and genotypes/subgenotypes of Cryptosporidium and Giardia in HIV/AIDS patients. Such insights would assist in a better management of clinical disease in immuno-deficient patients as well as improved preventive and control strategies.
  19. Lim SY, Yap KP, Teh CS, Jabar KA, Thong KL
    Infect Genet Evol, 2017 04;49:55-65.
    PMID: 28039075 DOI: 10.1016/j.meegid.2016.12.029
    Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VREfm) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains.
  20. Li YY, Liu H, Fu SH, Li XL, Guo XF, Li MH, et al.
    Infect Genet Evol, 2017 11;55:48-55.
    PMID: 28827175 DOI: 10.1016/j.meegid.2017.08.016
    Getah virus (GETV) was first isolated in Malaysia in 1955. Since then, epidemics in horses and pigs caused by GETV have resulted in huge economic losses. At present, GETV has spread across Eurasia and Southeast Asia, including mainland China, Korea, Japan, Mongolia, and Russia. Data show that the Most Recent Common Ancestor (MRCA) of GETV existed about 145years ago (95% HPD: 75-244) and gradually evolved into four distinct evolutionary populations: Groups I-IV. The MRCA of GETVs in Group III, which includes all GETVs isolated from mosquitoes, pigs, horses, and other animals since the 1960s (from latitude 19°N to 60°N), existed about 51years ago (95% HPD: 51-72). Group III is responsible for most viral epidemics among domestic animals. An analysis of the GETV E2 protein sequence and structure revealed seven common amino acid mutation sites. These sites are responsible for the structural and electrostatic differences detected between widespread Group III isolates and the prototype strain MM2021. These differences may account for the recent geographical radiation of the virus. Considering the economic significance of GETV infection in pigs and horses, we recommend the implementation of strict viral screening and monitoring programs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links