Displaying publications 21 - 40 of 88 in total

Abstract:
Sort:
  1. Yahaya Shagaiya Daniel, Zainal Abdul Aziz, Zuhaila Ismail, Faisal Salah
    MATEMATIKA, 2018;34(2):393-417.
    MyJurnal
    Analyzed the effects of thermal radiation, chemical reaction, heat gener-
    ation/absorption, magnetic and electric fields on unsteady flow and heat transfer of
    nanofluid. The transport equations used passively controlled. A similarity solution is
    employed to transformed the governing equations from partial differential equations to
    a set of ordinary differential equations, and then solve using Keller box method. It was
    found that the temperature is a decreasing function with the thermal stratification due to
    the fact the density of the fluid in the lower vicinity is much higher compared to the upper
    region, whereas the thermal radiation, viscous dissipation and heat generation enhanced
    the nanofluid temperature and thermal layer thickness.
  2. Amir S. A. Hamzah, Ali H. M. Murid
    MATEMATIKA, 2018;34(2):293-311.
    MyJurnal
    This study presents a mathematical model examining wastewater pollutant removal through
    an oxidation pond treatment system. This model was developed to describe the reaction
    between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dissolved
    oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
    of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
    pollutant (COD) concentrations, respectively. The coupling of these equations occurred
    due to the reactions between PSB, DO and COD to produce harmless compounds. Since
    the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, computational
    algorithm with a specific numerical method, which is implicit Crank-Nicolson
    method, was employed to simulate the dynamical behaviour of the system. Furthermore,
    numerical results revealed that the proposed model demonstrated high accuracy when
    compared to the experimental data.
  3. Hooi, M.H., Tiong, W. K., Tay, K. G., Chiew,K. L., Sze, S. N.
    MATEMATIKA, 2018;34(2):333-350.
    MyJurnal
    In this paper, we look at the propagation of internal solitary waves over three
    different types of slowly varying region, i.e. a slowly increasing slope, a smooth bump and
    a parabolic mound in a two-layer fluid flow. The appropriate mathematical model for this
    problem is the variable-coefficient extended Korteweg-de Vries equation. The governing
    equation is then solved numerically using the method of lines. Our numerical simulations
    show that the internal solitary waves deforms adiabatically on the slowly increasing slope.
    At the same time, a trailing shelf is generated as the internal solitary wave propagates
    over the slope, which would then decompose into secondary solitary waves or a wavetrain.
    On the other hand, when internal solitary waves propagate over a smooth bump or a
    parabolic mound, a trailing shelf of negative polarity would be generated as the results of
    the interaction of the internal solitary wave with the decreasing slope of the bump or the
    parabolic mound. The secondary solitary waves is observed to be climbing the negative
    trailing shelf.
  4. Bako Sunday Samuel, Mohd Bakri Adam, Anwar Fitrianto
    MATEMATIKA, 2018;34(2):365-380.
    MyJurnal
    Recent studies have shown that independent identical distributed Gaussian
    random variables is not suitable for modelling extreme values observed during extremal
    events. However, many real life data on extreme values are dependent and stationary
    rather than the conventional independent identically distributed data. We propose a stationary
    autoregressive (AR) process with Gumbel distributed innovation and characterise
    the short-term dependence among maxima of an (AR) process over a range of sample
    sizes with varying degrees of dependence. We estimate the maximum likelihood of the
    parameters of the Gumbel AR process and its residuals, and evaluate the performance
    of the parameter estimates. The AR process is fitted to the Gumbel-generalised Pareto
    (GPD) distribution and we evaluate the performance of the parameter estimates fitted
    to the cluster maxima and the original series. Ignoring the effect of dependence leads to
    overestimation of the location parameter of the Gumbel-AR (1) process. The estimate
    of the location parameter of the AR process using the residuals gives a better estimate.
    Estimate of the scale parameter perform marginally better for the original series than the
    residual estimate. The degree of clustering increases as dependence is enhance for the AR
    process. The Gumbel-AR(1) fitted to the threshold exceedances shows that the estimates
    of the scale and shape parameters fitted to the cluster maxima perform better as sample
    size increases, however, ignoring the effect of dependence lead to an underestimation of
    the parameter estimates of the scale parameter. The shape parameter of the original
    series gives a superior estimate compare to the threshold excesses fitted to the Gumbel
    distributed Generalised Pareto ditribution.
  5. Kerk, Lee Chang, Rohanin Ahmad
    MATEMATIKA, 2018;34(2):381-392.
    MyJurnal
    Optimization is central to any problem involving decision making. The area
    of optimization has received enormous attention for over 30 years and it is still popular
    in research field to this day. In this paper, a global optimization method called Improved
    Homotopy with 2-Step Predictor-corrector Method will be introduced. The method in-
    troduced is able to identify all local solutions by converting non-convex optimization
    problems into piece-wise convex optimization problems. A mechanism which only consid-
    ers the convex part where minimizers existed on a function is applied. This mechanism
    allows the method to filter out concave parts and some unrelated parts automatically.
    The identified convex parts are called trusted intervals. The descent property and the
    global convergence of the method was shown in this paper. 15 test problems have been
    used to show the ability of the algorithm proposed in locating global minimizer.
  6. Keong, Ang Tau
    MATEMATIKA, 2018;34(1):143-151.
    MyJurnal
    In this paper we consider a harvesting model of predator-prey fishery in which
    the prey is directly infected by some external toxic substances. The toxic infection is
    indirectly transmitted to the predator during the feeding process. The model is a modified
    version from the classic Lotka-Volterra predator-prey model. The stability and bifurcation
    analyses are addressed. Numerical simulations of the model are performed and bifurcation
    diagrams are studied to investigate the dynamical behaviours between the predator and
    the prey. The effects of toxicity and harvesting on the stability of steady states found in
    the model are discussed.
  7. Kashif, Amber Nehan, Zainal Abdul Aziz
    MATEMATIKA, 2018;34(1):31-47.
    MyJurnal
    In this paper, Maxwell fluid over a flat plate for convective boundary layer
    flow with pressure gradient parameter is considered. The aim of this study is to compare
    and analyze the effects of the presence and absence of λ (relaxation time), and also the
    effects of m (pressure gradient parameter) and Pr (Prandtl number)on the momentum
    and thermal boundary layer thicknesses. An approximation technique namely Homotopy
    Perturbation Method (HPM) has been used with an implementation of Adam and Gear
    Method’s algorithms. The obtained results have been compared for zero relaxation time
    and also pressure gradient parameter with the published work of Fathizadeh and Rashidi.
    The current outcomes are found to be in good agreement with the published results.
    Physical interpretations have been given for the effects of the m, Pr and β (Deborah
    number) with λ. This study will play an important role in industrial and engineering
    applications.
  8. Wan, Heng Fong, Nurul Izzaty Ismail
    MATEMATIKA, 2018;34(1):59-71.
    MyJurnal
    In DNA splicing system, the potential effect of sets of restriction enzymes and
    a ligase that allow DNA molecules to be cleaved and re-associated to produce further
    molecules is modelled mathematically. This modelling is done in the framework of formal
    language theory, in which the nitrogen bases, nucleotides and restriction sites are modelled
    as alphabets, strings and rules respectively. The molecules resulting from a splicing system
    is depicted as the splicing language. In this research, the splicing language resulting from
    DNA splicing systems with one palindromic restriction enzyme for one and two (nonoverlapping)
    cutting sites are generalised as regular expressions.
  9. Azim Azahari, Zuhaila Ismail, Normazni Abdullah
    MATEMATIKA, 2018;34(1):87-102.
    MyJurnal
    Numerical simulation of the behaviour of blood flow through a stenosed bifurcated
    artery with the presence of single mild stenosis at parent artery is investigated. The
    flow analysis applies the incompressible, steady, three-dimensional Navier-Stokes equations
    for non-Newtonian generalized power law fluids. Behaviour of blood flow is simulated
    numerically using COMSOL Multiphysicsthat based on finite element method.The
    results showthe effect of severity of stenosis on flow characteristics such as axial velocity
    and its exhibit flow recirculation zone for analysis on streamlines pattern.
  10. Suhartono, Prastyo, Dedy Dwi, Kuswanto, Heri, Muhammad Hisyam Lee
    MATEMATIKA, 2018;34(1):103-111.
    MyJurnal
    Monthly data about oil production at several drilling wells is an example of
    spatio-temporal data. The aim of this research is to propose nonlinear spatio-temporal
    model, i.e. Feedforward Neural Network - VectorAutoregressive (FFNN-VAR) and FFNN
    - Generalized Space-Time Autoregressive (FFNN-GSTAR), and compare their forecast
    accuracy to linearspatio-temporal model, i.e. VAR and GSTAR. These spatio-temporal
    models are proposed and applied for forecasting monthly oil production data at three
    drilling wells in East Java, Indonesia. There are 60 observations that be divided to two
    parts, i.e. the first 50 observations for training data and the last 10 observations for
    testing data. The results show that FFNN-GSTAR(11) and FFNN-VAR(1) as nonlinear
    spatio-temporal models tend to give more accurate forecast than VAR(1) and GSTAR(11)
    as linear spatio-temporal models. Moreover, further research about nonlinear spatiotemporal
    models based on neural networks and GSTAR is needed for developing new
    hybrid models that could improve the forecast accuracy.
  11. Siti Mariam Norrulashikin, Fadhilah Yusof, Kane, Ibrahim Lawal
    MATEMATIKA, 2018;34(1):73-85.
    MyJurnal
    Simulation is used to measure the robustness and the efficiency of the forecasting
    techniques performance over complex systems. A method for simulating multivariate
    time series was presented in this study using vector autoregressive base-process. By
    applying the methodology to the multivariable meteorological time series, a simulation
    study was carried out to check for the model performance. MAPE and MAE performance
    measurements were used and the results show that the proposed method that consider
    persistency in volatility gives better performance and the accuracy error is six time smaller
    than the normal hybrid model.
  12. Adam, M.B., Norazman, N., Mohamad Kasim, M.R.
    MATEMATIKA, 2018;34(1):113-123.
    MyJurnal
    Logging activity is one of the most important activities for tropical countries
    including Malaysia, as it produces quality trees for papers. One of the important tree
    species is the Acacia Mangium which it produces a soft tree for papermaking enterprises.
    The papers are exported to Europe and countries which have high demand for paper
    due to the rapid development of the printing industry. Thus we analyzed the height for
    individual trees. We investigate the maximum height of the trees from 1990 to 2006
    and we fit the data using extreme value model. Some of the data are missing and three
    imputation methods we used to solve this problem.
  13. Kashif Zaheer, Mohd Ismail Abd Aziz, Kashif, Amber Nehan, Syed Muhammad Murshid Raza
    MATEMATIKA, 2018;34(1):125-141.
    MyJurnal
    The selection criteria play an important role in the portfolio optimization
    using any ratio model. In this paper, the authors have considered the mean return as
    profit and variance of return as risk on the asset return as selection criteria, as the first
    stage to optimize the selected portfolio. Furthermore, the sharp ratio (SR) has been
    considered to be the optimization ratio model. In this regard, the historical data taken
    from Shanghai Stock Exchange (SSE) has been considered. A metaheuristic technique
    has been developed, with financial tool box available in MATLAB and the particle swarm
    optimization (PSO) algorithm. Hence, called as the hybrid particle swarm optimization
    (HPSO) or can also be called as financial tool box particle swarm optimization (FTBPSO).
    In this model, the budgets as constraint, where as two different models i.e. with
    and without short sale, have been considered. The obtained results have been compared
    with the existing literature and the proposed technique is found to be optimum and better
    in terms of profit.
  14. Ummu Atiqah Mohd Roslan
    MATEMATIKA, 2018;34(1):13-21.
    MyJurnal
    Markov map is one example of interval maps where it is a piecewise expanding
    map and obeys the Markov property. One well-known example of Markov map is the
    doubling map, a map which has two subintervals with equal partitions. In this paper, we
    are interested to investigate another type of Markov map, the so-called skewed doubling
    map. This map is a more generalized map than the doubling map. Thus, the aims of this
    paper are to find the fixed points as well as the periodic points for the skewed doubling
    map and to investigate the sensitive dependence on initial conditions of this map. The
    method considered here is the cobweb diagram. Numerical results suggest that there exist
    dense of periodic orbits for this map. The sensitivity of this map to initial conditions is
    also verified where small differences in initial conditions give different behaviour of the
    orbits in the map.
  15. Gorgey, Annie, Nor Azian Aini Mat
    MATEMATIKA, 2018;34(1):1-2.
    MyJurnal
    Symmetric methods such as the implicit midpoint rule (IMR), implicit trapezoidal
    rule (ITR) and 2-stage Gauss method are beneficial in solving Hamiltonian problems
    since they are also symplectic. Symplectic methods have advantages over non-symplectic
    methods in the long term integration of Hamiltonian problems. The study is to show
    the efficiency of IMR, ITR and the 2-stage Gauss method in solving simple harmonic
    oscillators (SHO). This study is done theoretically and numerically on the simple harmonic
    oscillator problem. The theoretical analysis and numerical results on SHO problem
    showed that the magnitude of the global error for a symmetric or symplectic method
    with stepsize h is linearly dependent on time t. This gives the linear error growth when
    a symmetric or symplectic method is applied to the simple harmonic oscillator problem.
    Passive and active extrapolations have been implemented to improve the accuracy of the
    numerical solutions. Passive extrapolation is observed to show quadratic error growth
    after a very short period of time. On the other hand, active extrapolation is observed to
    show linear error growth for a much longer period of time.
  16. Hamizah Rashid, Fuaada Mohd Siam, Normah Maan, Wan Nordiana W Abd Rahman
    MATEMATIKA, 2018;34(101):1-13.
    MyJurnal
    A mechanistic model has been used to explain the effect of radiation. The
    model consists of parameters which represent the biological process following ionizing
    radiation. The parameters in the model are estimated using local and global optimiza-
    tion algorithms. The aim of this study is to compare the efficiency between local and
    global optimization method, which is Pattern Search and Genetic Algorithm respectively.
    Experimental data from the cell survival of irradiated HeLa cell line is used to find the
    minimum value of the sum of squared error (SSE) between experimental data and sim-
    ulation data from the model. The performance of both methods are compared based on
    the computational time and the value of the objective function, SSE. The optimization
    process is carried out by using the built-in function in MATLAB software. The parameter
    estimation results show that genetic algorithm is more superior than pattern search for
    this problem.
  17. Nurliyana Juhan, Yong Zulina Zubairi, Zarina Mohd Khalid, Ahmad Syadi Mahmood Zuhdi
    MATEMATIKA, 2018;34(101):15-23.
    MyJurnal
    Cardiovascular disease (CVD) includes coronary heart disease, cerebrovascular disease (stroke), peripheral artery disease, and atherosclerosis of the aorta. All females face the threat of CVD. But becoming aware of symptoms and signs is a great challenge since most adults at increased risk of cardiovascular disease (CVD) have no symptoms or obvious signs especially in females. The symptoms may be identified by the assessment of their risk factors. The Bayesian approach is a specific way in dealing with this kind of problem by formalizing a priori beliefs and of combining them with the available observations. This study aimed to identify associated risk factors in CVD among female patients presenting with ST Elevation Myocardial Infarction (STEMI) using Bayesian logistic regression and obtain a feasible model to describe the data. A total of 874 STEMI female patients in the National Cardiovascular Disease Database-Acute Coronary Syndrome (NCVD-ACS) registry year 2006-2013 were analysed. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach was applied in the univariate and multivariate analysis. Model performance was assessed through the model calibration and discrimination. The final multivariate model of STEMI female patients consisted of six significant variables namely smoking, dyslipidaemia, myocardial infarction (MI), renal disease, Killip class and age group. Females aged 65 years and above have higher incidence of CVD and mortality is high among female patients with Killip class IV. Also, renal disease was a strong predictor of CVD mortality. Besides, performance measures for the model was considered good. Bayesian logistic regression model provided a better understanding on the associated risk factors of CVD for female patients which may help tailor prevention or treatment plans more effectively.
  18. Siti Nor Asiah binti Isa, Nor’aini Aris, Shazirawati Mohd Puzi, Hoe,Yeak Su
    MATEMATIKA, 2018;34(101):25-32.
    MyJurnal
    This paper revisits the comrade matrix approach in finding the greatest com-
    mon divisor (GCD) of two orthogonal polynomials. The present work investigates on the
    applications of the QR decomposition with iterative refinement (QRIR) to solve certain
    systems of linear equations which is generated from the comrade matrix. Besides iterative
    refinement, an alternative approach of improving the conditioning behavior of the coeffi-
    cient matrix by normalizing its columns is also considered. As expected the results reveal
    that QRIR is able to improve the solutions given by QR decomposition while the nor-
    malization of the matrix entries do improves the conditioning behavior of the coefficient
    matrix leading to a good approximate solutions of the GCD.
  19. Nor Aziran Awang, Normah Maan, Dasuki Sul’ain
    MATEMATIKA, 2018;34(101):33-34.
    MyJurnal
    Tumour cells behave differently than normal cells in the body. They grow and
    divide in an uncontrolled manner (actively proliferating) and fail to respond to signal.
    However, there are cells that become inactive and reside in quiescent phase (G0). These
    cells are known as quiescence cells that are less sensitive to drug treatments (radiotherapy
    and chemotherapy) than actively proliferation cells. This paper proposes a new mathe-
    matical model that describes the interaction of tumour growth and immune response by
    considering tumour population that is divided into three different phases namely inter-
    phase, mitosis and G0. The model consists of a system of delay differential equations
    where the delay, represents the time for tumour cell to reside interphase before entering
    mitosis phase. Stability analysis of the equilibrium points of the system was performed
    to determine the dynamics behaviour of system. Result showed that the tumour popu-
    lation depends on number of tumour cells that enter active (interphase and mitosis) and
    G0phases. This study is important for treatment planning since tumour cell can resist
    treatment when they refuge in a quiescent state.
  20. Norshela Mohd Noh, Arifah Bahar, Zaitul Marlizawati Zainuddin
    MATEMATIKA, 2018;34(101):45-55.
    MyJurnal
    Recently, oil refining industry is facing with lower profit margin due to un-
    certainty. This causes oil refinery to include stochastic optimization in making a decision
    to maximize the profit. In the past, deterministic linear programming approach is widely
    used in oil refinery optimization problems. However, due to volatility and unpredictability
    of oil prices in the past ten years, deterministic model might not be able to predict the
    reality of the situation as it does not take into account the uncertainties thus, leads to
    non-optimal solution. Therefore, this study will develop two-stage stochastic linear pro-
    gramming for the midterm production planning of oil refinery to handle oil price volatility.
    Geometric Brownian motion (GBM) is used to describe uncertainties in crude oil price,
    petroleum product prices, and demand for petroleum products. This model generates the
    future realization of the price and demands with scenario tree based on the statistical
    specification of GBM using method of moment as input to the stochastic programming.
    The model developed in this paper was tested for Malaysia oil refinery data. The result
    of stochastic approach indicates that the model gives better prediction of profit margin.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links