Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Cui Y, Song BK, Li LF, Li YL, Huang Z, Caicedo AL, et al.
    G3 (Bethesda), 2016 Dec 07;6(12):4105-4114.
    PMID: 27729434 DOI: 10.1534/g3.116.035881
    Weedy rice is a conspecific form of cultivated rice (Oryza sativa L.) that infests rice fields and results in severe crop losses. Weed strains in different world regions appear to have originated multiple times from different domesticated and/or wild rice progenitors. In the case of Malaysian weedy rice, a multiple-origin model has been proposed based on neutral markers and analyses of domestication genes for hull color and seed shattering. Here, we examined variation in pericarp (bran) color and its molecular basis to address how this trait evolved in Malaysian weeds and its possible role in weed adaptation. Functional alleles of the Rc gene confer proanthocyanidin pigmentation of the pericarp, a trait found in most wild and weedy Oryzas and associated with seed dormancy; nonfunctional rc alleles were strongly favored during rice domestication, and most cultivated varieties have nonpigmented pericarps. Phenotypic characterizations of 52 Malaysian weeds revealed that most strains are characterized by the pigmented pericarp; however, some weeds have white pericarps, suggesting close relationships to cultivated rice. Phylogenetic analyses indicate that the Rc haplotypes present in Malaysian weeds likely have at least three distinct origins: wild O. rufipogon, white-pericarp cultivated rice, and red-pericarp cultivated rice. These diverse origins contribute to high Rc nucleotide diversity in the Malaysian weeds. Comparison of Rc allelic distributions with other rice domestication genes suggests that functional Rc alleles may confer particular fitness benefits in weedy rice populations, for example, by conferring seed dormancy. This may promote functional Rc introgression from local wild Oryza populations.
    Matched MeSH terms: Adaptation, Biological
  2. Yaakop AS, Chan KG, Ee R, Lim YL, Lee SK, Manan FA, et al.
    Sci Rep, 2016 09 19;6:33660.
    PMID: 27641516 DOI: 10.1038/srep33660
    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis.
    Matched MeSH terms: Adaptation, Biological
  3. Auburn S, Getachew S, Pearson RD, Amato R, Miotto O, Trimarsanto H, et al.
    J Infect Dis, 2019 Oct 22;220(11):1738-1749.
    PMID: 30668735 DOI: 10.1093/infdis/jiz016
    The Horn of Africa harbors the largest reservoir of Plasmodium vivax in the continent. Most of sub-Saharan Africa has remained relatively vivax-free due to a high prevalence of the human Duffy-negative trait, but the emergence of strains able to invade Duffy-negative reticulocytes poses a major public health threat. We undertook the first population genomic investigation of P. vivax from the region, comparing the genomes of 24 Ethiopian isolates against data from Southeast Asia to identify important local adaptions. The prevalence of the Duffy binding protein amplification in Ethiopia was 79%, potentially reflecting adaptation to Duffy negativity. There was also evidence of selection in a region upstream of the chloroquine resistance transporter, a putative chloroquine-resistance determinant. Strong signals of selection were observed in genes involved in immune evasion and regulation of gene expression, highlighting the need for a multifaceted intervention approach to combat P. vivax in the region.
    Matched MeSH terms: Adaptation, Biological
  4. Noor YM, Samsulrizal NH, Jema'on NA, Low KO, Ramli AN, Alias NI, et al.
    Gene, 2014 Jul 25;545(2):253-61.
    PMID: 24811681 DOI: 10.1016/j.gene.2014.05.012
    Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.
    Matched MeSH terms: Adaptation, Biological/genetics
  5. Wong JH, Namasivayam P, Abdullah MP
    Planta, 2012 Feb;235(2):267-77.
    PMID: 21874349 DOI: 10.1007/s00425-011-1506-9
    Phenylalanine ammonia lyase (PAL) plays a major role in plant growth, development and adaptation. In Arabidopsis thaliana, the enzyme is encoded by four genes, namely PAL1, PAL2, PAL3, and PAL4 with PAL1 and PAL2 being closely related phylogenetically and functionally. PAL1 promoter activities are associated with plant development and are inducible by various stress agents. However, PAL2 promoter activities have not been functionally analysed. Here, we show that the PAL2 promoter activities are associated with the structural development of a plant and its organs. This function was inducible in an organ-specific manner by the avirulent strain of Pseudomonas syringae pv. tomato (JL1065). The PAL2 promoter was active throughout the course of the plant development particularly in the root, rosette leaf, and inflorescence stem that provide the plant with structural support. In aerial organs, the levels of PAL2 promoter activities were negatively correlated with relative positions of the organs to the rosette leaves. The promoter was inducible in the root following an inoculation by JL1065 in the leaf suggesting PAL2 to be part of an induced defence system. Our results demonstrate how the PAL2 promoter activities are being coordinated and synchronised for the structural development of the plant and its organs based on the developmental programme. Under certain stress conditions the activity may be induced in favour of certain organs.
    Matched MeSH terms: Adaptation, Biological*
  6. Bänziger H
    Acta Trop, 1975;32(2):125-44.
    PMID: 240258
    The Noctuid Calpe [Calyptral] eustrigata Hmps. was reported as a skin-piercing blood-sucking moth for the first time in Malaya (Bänziger, 1968) and is so far the only lepidopteran proved to suck blood by means of a piercing act. A few field observations and the description of the piercing behaviour of caged moths were given. Apart from a taxonomic study of the genus Calpe (Berio, 1956), a single record (Büttiker, 1969) and some notes on the moth's proboscis and possible evolutionary pathway (Bänziger, 1970, 1971, 1972) to our knowledge no other data have been published on the moth after its description as a new species (Hampson, 1926). The life cycle is completely unknown. From the scanty museum specimens available, it appears that the species inhabits South and Southeast Asia. A closely related, though less rare species, the fruit-piercing C. thalictri Bkh., has been used for a detailed study of the piercing mechanism likely to be adopted by Calpe (Bänziger, 1970); the feeding turned out to be as unusual as the feeding habits. Little or nothing is known about other Calpe species. C. eustrigata is not the only adult lepidopterous parasite of mammals. Lachryphagous ("eye-frequenting") moths feed as "marginal" parasites upon eye-secretions of ungulates, elephants and occasionally man (Shannon, 1928; Reid, 1954; Büttiker, 1964, 1967; Bänziger, 1966). Arcyophora species and the eulachryphagous Noctuid Lobocraspis graseifusa Hmps. which apparently feeds exclusively upon eye discharges, are suspected as vectors of eye diseases (Guilbride et al., 1959, Büttiker, 1964; Bänziger, 1972). While no lachryphagous moth is able to suck blood by a piercing act, there are a number of facultative lachryphagous moths which lick up the blood freely present at wounds, or that excreted anally by mosquitoes (Bänziger, 1969, 1972). Because of the scientific interest in C. eustrigata, research has been carried out to investigate different biological aspects of the species in Malaysia, Thailand. Laos and Indonesia (May 1971-May 1973). The first account presented here will be continued with a paper (in prep.) on the piercing mechanism and soon, it is hoped, with more information on the physiology, life cycle and medical importance of the moth.
    Matched MeSH terms: Adaptation, Biological
  7. Ali MS, Ganasen M, Rahman RN, Chor AL, Salleh AB, Basri M
    Protein J, 2013 Apr;32(4):317-25.
    PMID: 23645400 DOI: 10.1007/s10930-013-9488-z
    A new strain of psychrophilic bacteria (designated strain AMS8) from Antarctic soil was screened for extracellular lipolytic activity and further analyzed using molecular approach. Analysis of 16S rDNA showed that strain AMS8 was similar to Pseudomonas sp. A lipase gene named lipAMS8 was successfully isolated from strain AMS8, cloned, sequenced and overexpressed in Escherichia coli. Sequence analysis revealed that lipAMS8 consist of 1,431 bp nucleotides that encoded a polypeptide consisting of 476 amino acids. It lacked an N-terminal signal peptide and contained a glycine- and aspartate-rich nonapeptide sequence at the C-terminus, which are known to be the characteristics of repeats-in-toxin bacterial lipases. Furthermore, the substrate binding site of lipAMS8 was identified as S(207), D(255) and H(313), based on homology modeling and multiple sequence alignment. Crude lipase exhibited maximum activity at 20 °C and retained almost 50 % of its activity at 10 °C. The molecular weight of lipAMS8 was estimated to be 50 kDa via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal expression level was attained using the recombinant plasmid pET32b/BL21(DE3) expressed at 15 °C for 8 h, induced by 0.1 mM isopropyl β-D thiogalactoside (IPTG) at E. coli growth optimal density of 0.5.
    Matched MeSH terms: Adaptation, Biological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links