Displaying publications 21 - 40 of 244 in total

Abstract:
Sort:
  1. Brodie JF, Giordano AJ, Dickson B, Hebblewhite M, Bernard H, Mohd-Azlan J, et al.
    Conserv Biol, 2015 Feb;29(1):122-32.
    PMID: 25065425 DOI: 10.1111/cobi.12337
    Habitat corridors are important tools for maintaining connectivity in increasingly fragmented landscapes, but generally they have been considered in single-species approaches. Corridors intended to facilitate the movement of multiple species could increase persistence of entire communities, but at the likely cost of being less efficient for any given species than a corridor intended specifically for that species. There have been few tests of the trade-offs between single- and multispecies corridor approaches. We assessed single-species and multispecies habitat corridors for 5 threatened mammal species in tropical forests of Borneo. We generated maps of the cost of movement across the landscape for each species based on the species' local abundance as estimated through hierarchical modeling of camera-trap data with biophysical and anthropogenic covariates. Elevation influenced local abundance of banded civets (Hemigalus derbyanus) and sun bears (Helarctos malayanus). Increased road density was associated with lower local abundance of Sunda clouded leopards (Neofelis diardi) and higher local abundance of sambar deer (Rusa unicolor). Pig-tailed macaque (Macaca nemestrina) local abundance was lower in recently logged areas. An all-species-combined connectivity scenario with least-cost paths and 1 km buffers generated total movement costs that were 27% and 23% higher for banded civets and clouded leopards, respectively, than the connectivity scenarios for those species individually. A carnivore multispecies connectivity scenario, however, increased movement cost by 2% for banded civets and clouded leopards. Likewise, an herbivore multispecies scenario provided more effective connectivity than the all-species-combined scenario for sambar and macaques. We suggest that multispecies habitat connectivity plans be tailored to groups of ecologically similar, disturbance-sensitive species to maximize their effectiveness.
    Matched MeSH terms: Animal Distribution*
  2. Butler SG, Steinhoff PO, Dow RA
    Zootaxa, 2016 Nov 03;4184(2):367-375.
    PMID: 27811645 DOI: 10.11646/zootaxa.4184.2.8
    The final instar larva of Acrogomphus jubilaris Lieftinck, 1964, is described and figured for the first time based on exuviae from four male and one female larvae collected in Sarawak, Malaysian Borneo. The adults of A. jubilaris are very rarely encountered. The larvae, however, are surprisingly common in forest streams in Borneo. It is compared with A. malayanus Laidlaw, 1925 and A. walshae Lieftinck, 1935, and notes on behavior, distribution and habitat are included. A map including all known records of A. jubilaris is provided.
    Matched MeSH terms: Animal Distribution
  3. Cabra-García J, Brescovit AD
    Zootaxa, 2016 Jan 27;4069(1):1-183.
    PMID: 27395905 DOI: 10.11646/zootaxa.4069.1.1
    A taxonomic revision and phylogenetic analysis of the spider genus Glenognatha Simon, 1887 is presented. This analysis is based on a data set including 24 Glenognatha species plus eight outgroups representing three related tetragnathine genera and one metaine as the root. These taxa were scored for 78 morphological characters. Parsimony was used as the optimality criterion and a sensitivity analysis was performed using different character weighting concavities. Seven unambiguous synapomorphies support the monophyly of Glenognatha. Some internal clades within the genus are well-supported and its relationships are discussed. Glenognatha as recovered includes 27 species, four of them only known from males. A species identification key and distribution maps are provided for all. New morphological data are also presented for thirteen previously described species. Glenognatha has a broad distribution occupying the Neartic, Afrotropic, Indo-Malaya, Oceania and Paleartic regions, but is more diverse in the Neotropics. The following eleven new species are described: G. vivianae n. sp., G. caaguara n. sp., G. boraceia n. sp. and G. timbira n. sp. from southeast Brazil, G. caparu n. sp., G. januari n. sp. and G. camisea n. sp. from the Amazonian region, G. mendezi n. sp., G. florezi n. sp. and G. patriceae n. sp. from northern Andes and G. gouldi n. sp. from Southern United States and central Mexico. Females of G. minuta Banks, 1898, G. gaujoni Simon, 1895 and G. gloriae (Petrunkevitch, 1930) and males of G. globosa (Petrunkevitch, 1925) and G. hirsutissima (Berland, 1935) are described for the first time. Three new combinations are proposed in congruence with the phylogenetic results: G. argyrostilba (O. P.-Cambridge, 1876) n. comb., G. dentata (Zhu & Wen, 1978) n. comb. and G. tangi (Zhu, Song & Zhang, 2003) n. comb., all previously included in Dyschiriognatha Simon, 1893. The following taxa are newly synonymized: Dyschiriognatha montana Simon, 1897, Glenognatha mira Bryant, 1945 and Glenognatha maelfaiti Baert, 1987 with Glenognatha argyrostilba (Pickard-Cambridge, 1876) and Glenognatha centralis Chamberlin, 1925 with Glenognatha minuta Banks, 1898.
    Matched MeSH terms: Animal Distribution
  4. Chan KO, Grismer LL, Brown RM
    Zootaxa, 2014;3900(4):569-80.
    PMID: 25543757 DOI: 10.11646/zootaxa.3900.4.7
    A new species of Narrow-mouthed frog of the genus Kaloula is described from northern Peninsular Malaysia. Kaloula latidisca sp. nov. is genetically and morphologically most similar to K. baleata and K. indochinensis but differs from those and other congeners by the unique combination of the following characters: (1) adult males SVL 49.2-56.2 mm (x̅=53.5 ± 3.0; N=4); (2) finger tips expanded into large, transversely expanded discs (disc width 2.8-3.1 mm, x̅=3.0 ± 0.1); (3) inner metatarsal tubercle large, oval, distinctly raised, slightly shorter than first toe; (4) three subarticular tubercles on fourth toe; (5) toe webbing formula: I 1-2 II 1-3 III 2-3.5 IV 4-2 V; and (6) yellow to orange irregularly shaped patch on the axillary, inguinal and posterior region of thigh.
    Matched MeSH terms: Animal Distribution
  5. Chen CA
    Zootaxa, 2015;3905(2):233-44.
    PMID: 25661208 DOI: 10.11646/zootaxa.3905.2.5
    The nematode Pseudoplatycoma malaysianis n. gen. n. sp. is described from the Sulu Sea (Malaysia). The new genus is classified in the subfamily Platycominae Platonova 1976. Revision of the new genus and four other genera in Platycominae, resulted in four species from the genus Platycomopsis being transferred to other genera: P. dimorphica and P. mazjatzavi to the genus Platycoma; P. effilata to the genus Micoletzkyia; and P. gibbonensis to the genus Anticoma. Pilosinema is regarded as a asynonym of Platycomopsis and Platycomopsis paracobbi is regarded as a synonym for P. cobbi. A key for identification of the genera and species of Platycominae is presented. 
    Matched MeSH terms: Animal Distribution
  6. Chen PP, Nieser N, Lapidin J
    Zookeys, 2015.
    PMID: 25987878 DOI: 10.3897/zookeys.501.9416
    Previous research of Bornean Micronectidae Jaczewski, 1924 (pygmy water boatmen) is summarized based on the data from the literature and recent work. All the Bornean micronectids belong to the genus Micronecta Kirkaldy, 1897. Descriptions or redescriptions and a key to the eight species, which have so far been found in Borneo are presented, namely Micronectadecorata Lundblad, 1933, Micronectaludibunda Breddin, 1905, Micronectaliewi sp. n., Micronectalakimi sp. n., Micronectalumutensis Chen, Nieser & Lansbury, 2008, Micronectaskutalis Nieser & Chen, 1999, Micronectakymatista Nieser & Chen, 1999) and Micronectaquadristrigata Breddin, 1905. The synonyms are indicated under each species. To facilitate identification, illustrations and habitus photos are provided. The faunistic components of Micronectidae in Borneo are discussed from a zoogeographic point of view.
    Matched MeSH terms: Animal Distribution
  7. Choong CY
    Zootaxa, 2016 Sep 28;4171(2):382-388.
    PMID: 27701232 DOI: 10.11646/zootaxa.4171.2.11
    A new species Leptogomphus tioman is described based on male specimens collected from Tioman Island, Peninsular Malaysia. It is close to Leptogomphus risi Laidlaw in thoracic markings but is readily distinguished by its anal appendages and accessory genitalia.
    Matched MeSH terms: Animal Distribution
  8. ChŁond D
    Zootaxa, 2018 Nov 12;4520(1):1-85.
    PMID: 30486182 DOI: 10.11646/zootaxa.4520.1.1
    This paper presents a taxonomic revision of 28 described species of the genus Sirthenea Spinola, 1837 (Hemiptera: Heteroptera: Reduviidae: Peiratinae) distributed in the Afrotropical, Oriental, Palearctic, Oceanian and Australian zoogeographical regions. The following new synonymies are proposed: Sirthenea africana Distant, 1903 = S. rapax Horváth, 1909, syn. nov. = S. leonina Horváth, 1909, syn. nov. = S. bequaerti Schouteden, 1913, syn. nov. = S. leontovitchi Schouteden, 1931, syn. nov.; Sirthenea picescens Reuter, 1887 = S. atrocyanea Horváth, 1909, syn. nov.; S. rodhaini Schouteden, 1913 = S. collarti Schouteden, 1931, syn. nov. = S. angolana Villiers, 1958, syn. nov.; S. flavipes (Stål, 1855) = S. clavata Miller, 1948, syn. nov. = S. bharati Sucheta Chopra, 1988, syn. nov. = S. koreana Kerzhner Lee, 1996 syn. nov. = S. melanota Cai Lu, 1990, syn. nov. = S. nigripes Murugan Livingstone, 1990, syn. nov.; S. obscura (Stål, 1866) = S. glabra (Walker, 1873), syn. nov. A neotype is designated for S. picescens Reuter, 1887. Three species, S. erythromelas (Walker 1873), S. fulvipennis (Walker, 1873) and S. sobria (Walker, 1873), are excluded from the genus Sirthenea. Two new species from the Oriental Region, S. kali sp. nov. (India) and S. setosa sp. nov. (Malaysia) are described. Identification keys are provided for the subgenera and species from each zoogeographical region treated. Drawings of dorsal habitus and genitalic structures, drawings and images of selected morphological characters, and distribution maps of all valid species are presented.
    Matched MeSH terms: Animal Distribution
  9. Cobos A, Grismer LL, Wood PL, Quah ES, Anuar S, Muin MA
    Zootaxa, 2016 May 03;4107(3):367-80.
    PMID: 27394826 DOI: 10.11646/zootaxa.4107.3.5
    An integrative taxonomic analysis based on the mitochondrial gene ND2 and its flanking tRNAs, morphology, and color pattern indicates that a newly discovered gecko described herein as Hemiphyllodactylus cicak sp. nov. from Penang Hill on the Island of Penang, Peninsular Malaysia is a member of the H. harterti group. Hemiphyllodactylus cicak sp. nov. is most closely related to the clade composed of the sister species H. harterti from Bukit Larut, Perak in the Bintang Mountain Range and H. bintik from Gunung Tebu, Terengganu from the Timur Mountain Range. These three allopatric species form a monophyletic group that extends approximately 270 km across three isolated mountain ranges in northern Peninsular Malaysia. The molecular analysis also indicates that H. titiwangsaensis from the Titiwangsa Mountain Range is composed of three genetically distinct allopatric populations. The southern two populations from Fraser's Hill and Genting Highlands, Pahang have an uncorrected pairwise sequence divergence of 3.5% whereas these two populations have 12.4 and 12.8 % sequence divergences, respectively, from the northern population at Cameron Highlands, Pahang. Although the high sequence divergence clearly distinguishes the southern two populations from the former as a different species, all three populations are morphologically indistinguishable, leading to the hypothesis of a true, cryptic speciation event.
    Matched MeSH terms: Animal Distribution*
  10. Colloff MJ, Cameron SL
    Zootaxa, 2014;3780:263-81.
    PMID: 24871836 DOI: 10.11646/zootaxa.3780.2.3
    The genus Austronothrus was previously known from three species recorded only from New Zealand. Austronothrus kinabalu sp. nov. is described from Sabah, Borneo and A. rostralis sp. nov. from Norfolk Island, south-west Pacific. A key to Austronothrus is included. These new species extend the distribution of Austronothrus beyond New Zealand and confirms that the subfamily Crotoniinae is not confined to former Gondwanan landmasses. The distribution pattern of Austronothrus spp., combining Oriental and Gondwanan localities, is indicative of a curved, linear track; consistent with the accretion of island arcs and volcanic terranes around the plate margins of the Pacific Ocean, with older taxa persisting on younger island though localised dispersal within island arc metapopulations. Phylogenetic analysis and an area cladogram are consistent with a broad ancestral distribution of Austronothrus in the Oriental region and on Gondwanan terranes, with subsequent divergence and distribution southward from the Sunda region to New Zealand. This pattern is more complex than might be expected if the New Zealand oribatid fauna was derived from dispersal following re-emergence of land after inundation during the Oligocene (25 mya), as well as if the fauna emanated from endemic, relictual taxa following separation of New Zealand from Gondwana during the Cretaceous (80 mya).
    Matched MeSH terms: Animal Distribution
  11. Coppard SE, Jessop H, Lessios HA
    Sci Rep, 2021 Aug 16;11(1):16568.
    PMID: 34400682 DOI: 10.1038/s41598-021-95872-0
    The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo-Pacific. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene flow across the Indo-Pacific we sequenced mitochondrial 16S rDNA, ATPase-6, and ATPase-8, and nuclear 28S rDNA and the Calpain-7 intron. Our analyses revealed that E. diadema formed a single trans-Indo-Pacific clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo-Pacific biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans-Indo-Pacific clade and Red Sea and Gulf of Oman clade split from the western and central Pacific clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level differentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specific. There was little colour polymorphism in E. diadema.
    Matched MeSH terms: Animal Distribution
  12. Cranston PS
    Zootaxa, 2016 May 09;4109(3):315-31.
    PMID: 27394867 DOI: 10.11646/zootaxa.4109.3.3
    The presence of the Afro-Australian genus Conochironomus Freeman, 1961 (Diptera: Chironomidae) in Asia has been recognised only informally. An unpublished thesis included Conochironomus from Singapore, and the genus has been keyed from Malaysia without named species. Here, the Sumatran Conochironomus tobaterdecimus (Kikuchi & Sasa, 1980) comb. n. is recorded from Singapore and Thailand. The species is transferred from Sumatendipes Kikuchi & Sasa, 1980, rendering the latter a junior synonym (syn. n.) of Conochironomus Freeman. Conochironomus nuengthai sp. n. and Conochironomus sawngthai sp. n. are described as new to science, based on adult males from Chiang Mai, Thailand. All species conform to existing generic diagnoses for all life stages, with features from male and female genitalia, pupal cephalic tubercles and posterolateral 'spurs' of tergite VIII providing evidence for species distinction. Some larvae are linked to C. tobaterdecimus through molecular barcoding. Variation in other larvae, which clearly belong to Conochironomus and are common throughout Thailand, means that they cannot be segregated to species. Larval habitats include pools in river beds, urban storage reservoirs, drains with moderately high nutrient loadings, and peat swamps. Endochironomus effusus Dutta, 1994 from north-eastern India may be a congener but may differ in adult morphology, thereby precluding formal new combination until discrepancies can be reconciled. Many problems with vouchering taxonomic and molecular material are identified that need to be rectified in the future.
    Matched MeSH terms: Animal Distribution
  13. Csorba G, Görföl T, Wiantoro S, Kingston T, Bates PJ, Huang JC
    Zootaxa, 2015 Jun 29;3980(2):267-78.
    PMID: 26249952 DOI: 10.11646/zootaxa.3980.2.7
    To date, three species of the genus Glischropus are recognized from the Indomalayan zoogeographic region-G. bucephalus from the Indochinese subregion, G. tylopus from the Sundaic subregion (Peninsular Thailand and Malaysia, Borneo, Sumatra, Moluccas) and G. javanus, restricted to Java. The investigation of the holotype and three topotype specimens of G. batjanus supported the view that the name was previously correctly regarded as the junior subjective synonym of G. tylopus. During review of material recently collected in southwestern Sumatra, Indonesia, one specimen of a yet undescribed species of Thick-thumbed bat was identified. G. aquilus n. sp. markedly differs from its congeners by its dark brown pelage, nearly black ear and tragus, and in skull proportions. The phylogenetic analysis based on cytb sequences also supports the specific distinctness of G. aquilus n. sp. Its discovery brings the count to 88 species of bats known from Sumatra.
    Matched MeSH terms: Animal Distribution*
  14. Dang LH, Mound LA, Qiao GX
    Zootaxa, 2014;3807:1-82.
    PMID: 24871154 DOI: 10.11646/zootaxa.3807.1.1
    An illustrated identification key is provided to 100 genera of Phlaeothripinae from China and Southeast Asia, together with a diagnosis for each genus, and comments on the species diversity. One new genus with a new species, Akarethrips iotus gen.n. & sp.n., and two new species, Heliothripoides boltoni sp.n. and Terthrothrips strasseni sp.n., are described from specimens collected in Peninsular Malaysia and Java respectively. Three Phlaeothripinae genera are synonymised, Mychiothrips Haga & Okajima syn.n. of Veerabahuthrips Ramakrishna, Syringothrips Priesner syn.n. of GigantothripsZimmermann, and Sauridothrips Priesner syn.n. of Gynaikothrips Zimmermann. In addition, four nomenclatural changes are included, Adelphothrips ignotus (Reyes) comb.n. transferred from Mesothrips, Karnyothrips palmerae (Chen) comb.n from Xylaplothrips, Xylaplothrips bogoriensis (Karny) comb.n from Brachythrips, and Oidanothrips notabilisFeng, Guo & Duan considered as a new synonym of Oidanothrips frontalis (Bagnall).
    Matched MeSH terms: Animal Distribution
  15. Dang LH, Mound LA, Qiao GX
    Zootaxa, 2013;3716:1-21.
    PMID: 26106761
    The Oriental genus Stigmothrips Ananthakrishnan is synonymised with A draneothrips Hood, a genus in which most species have been described from the Neotropics. Problems with descriptions by T.N. Ananthakrishnan of species from India are discussed, but cannot be fully resolved without access to the holotypes. A key is provided to 23 species of Adraneothrips from Asia and Australia, including four new species: darwini sp. n. from Northern Territory, Australia; hani sp. n. from Taiwan, China; yunnanensis sp. n. from Yunnan, China as well as Java, Indonesia; and waui sp. n. from Papua New Guinea. One species from the Philippines, Adraneothrips makilingensis (Reyes) comb. n., is transferred from Apelaunothrips, and the male of Adraneothrips russatus (Haga) is described and illustrated for the first time, from Yunnan, China. Two species are newly recorded from Australia: coloratus (Mound) previously known only from the Solomon Islands, and russatus (Haga) previously known from southern Japan and southern China but with one female recorded here from Fiji. Further new records are, coloratus from Java, and chinensis (Zhang & Tong) from Malaysia. Colonies of species in this genus are commonly found living on dead leaves, as fungus-feeders, and many species are brightly coloured or bicoloured in patterns of yellow and brown.
    Matched MeSH terms: Animal Distribution
  16. David P, Vogel G, Van Rooijen J
    Zootaxa, 2013;3694:301-35.
    PMID: 26312293
    Three species of the genus Amphiesma Duméril, Bibron & Duméril, 1854 have long been confused in the literature, with each other and with other species of the genus. Amphiesma khasiense (Boulenger, 1890) has been considered to inhabit a large geographical region, extending from north-eastern India, east to Vietnam and southern Thailand. Amphiesma boulengeri (Gressitt, 1937) has been regarded as a species endemic to south-eastern China. Amphiesma inas (Laidlaw, 1901) has been recorded from West Malaysia, Thailand and Indonesia (Sumatra). A multivariate analysis of morphometric and meristic characters shows that these three species can be separated by combinations of characters in the scalation and pattern, the most obvious being the structure of the postocular streak. On the basis of our analysis and after comparison with name-bearing type specimens, Amphiesma khasiense is restricted to north-eastern India, Myanmar, western Yunnan Province of China, northern Laos and northern and western Thailand. Other populations from south-eastern China, Vietnam, other parts of Laos, Cambodia and central Thailand, which have been recorded in the literature as A. khasiense, A.johannis or Amphiesma modestum (Günther, 1875), should be referred to Amphiesma boulengeri. Amphiesma inas (Laidlaw, 1901) is a valid species endemic to mountain ranges of southern Peninsular Thailand and West Malaysia. The mention of Amphiesma inas in Sumatra is erroneous, being based on the second known specimen of Amphiesma kerinciense David & Das, 2003, which is here redescribed. A key to species of the Amphiesma khasiense group and other species sharing a greyish-brown background without conspicuous dark and pale stripes, is provided.
    Matched MeSH terms: Animal Distribution
  17. Davis HR, Bauer AM, Jackman TR, Nashriq I, DAS I
    Zootaxa, 2019 Jun 10;4614(2):zootaxa.4614.2.4.
    PMID: 31716380 DOI: 10.11646/zootaxa.4614.2.4
    The island of Borneo lies within one of the most biodiverse regions in the world. Despite this, its documented gekkonid diversity is not commensurate with other areas of Southeast Asia. The megadiverse genus Cyrtodactylus is especially underrepresented. Limestone-karst ecosystems, in particular, harbor many endemic Cyrtodactylus species, but only one karst-dwelling species is currently recognized from Borneo. This paper adds two additional karst-dwelling Cyrtodactylus species-C. muluensis sp. nov. and C. limajalur sp. nov.-from Sarawak, Malaysia. Cyrtodactylus muluensis sp. nov. is endemic to Gunung Mulu and is distinguished from its congeners by having a precloacal groove, 31-38 ventral scales, a maximum SVL of at least 88 mm, enlarged subcaudals, 19-20 subdigital lamellae, and a banded dorsal body pattern. Cyrtodactylus limajalur sp. nov. is endemic to the Serian region and is distinguished from its congeners by having 33-42 ventral scales, enlarged subcaudals, a precloacal pit, a maximum SVL of at least 94 mm, 5-6 enlarged femoral scales, 19-22 subdigital lamellae, and five distinct bands on the dorsum. Both species are phylogenetically distinct and deeply divergent from all other congeners. The description of two new karst-dwelling species highlights the need to conserve karst habitats and the endemic species they harbor.
    Matched MeSH terms: Animal Distribution
  18. Davis HR, Grismer LL, Klabacka RL, Muin MA, Quah ES, Anuar S, et al.
    Zootaxa, 2016 Apr 12;4103(2):137-53.
    PMID: 27394624 DOI: 10.11646/zootaxa.4103.2.4
    Twelve species of Ansonia occur on the Thai-Malay peninsula, of which, five from Peninsular Malaysia, form a monophyletic group. One of these, A. jeetsukumarani, is endemic to the Titiwangsa Mountain Range, in which, we discovered a new population of Ansonia that is not A. jeetsukumarani or even its closest relative. Based on morphology, color pattern, and molecular phylogenetic analyses using the mitochondrial genes 12s and 16s rRNA, we have determined that this new species, A. smeagol sp. nov., forms the sister lineage to an upland, monophyletic group composed of A. jeetsukumarani, A. lumut, A. malayana, and A. penangensis. We have noted similar biogeographic patterns in other taxa from the Titiwangsa Mountain Range in a number of upland lineages in Peninsular Malaysia. We hypothesize that the phylogeographic structure of these upland populations is a result of stochastic processes stemming from interaction of climate-driven forest dynamics and life histories.
    Matched MeSH terms: Animal Distribution
  19. Dehling JM, Dehling M
    Zootaxa, 2013;3686:277-88.
    PMID: 26473218
    A new species of Philautus is described from western Sarawak. The new species was collected in lower montane forest in two national parks in Sarawak and recorded from another park. It differs from its congeners by a unique combination of morphological characters, including a long, acuminate snout, long legs, and comparatively extensive toe webbing. The advertisement call of the new species differs from all calls of other species that have been analyzed so far. Comparison of the mitochondrial 16S rRNA gene sequence corroborates its distinct specific status.
    Matched MeSH terms: Animal Distribution
  20. Dehling JM, Matsui M
    Zootaxa, 2013;3670:33-44.
    PMID: 26438919
    We describe a new species of Leptolalax from Gunung Mulu National Park in eastern Sarawak, Malaysian Borneo. The new species had been assigned to Leptolalax dringi and Leptolalax gracilis in the past. It is shown to differ from both these species and from all other species of the genus by a unique combination of morphological characters including large body size, rounded snout, interorbital distance being smaller than width of upper eyelid, bipartite subgular vocal sac in males, basal toe webbing, shagreened skin with tiny tubercles on dorsum and dorsal side of head, angled supratympanic fold, small pectoral glands, absence of supraaxillary glands and ventrolateral glandular ridges, spotted venter, advertisement call consisting of long series of 8-289 notes, each composed of three or four pulses, and dominant frequency at 7225-9190 Hz, with prominent frequency modulation.
    Matched MeSH terms: Animal Distribution
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links