Displaying publications 21 - 40 of 75 in total

Abstract:
Sort:
  1. Yong YY, Dykes G, Lee SM, Choo WS
    J Appl Microbiol, 2019 Jan;126(1):68-78.
    PMID: 30153380 DOI: 10.1111/jam.14091
    AIMS: To investigate the biofilm inhibitory activity of betacyanins from red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius) against Staphylococcus aureus and Pseudomonas aeruginosa biofilms.

    METHODS AND RESULTS: The pulp of red pitahaya and the leaves of red spinach were extracted using methanol followed by subfractionation to obtain betacyanin fraction. The anti-biofilm activity was examined using broth microdilution assay on polystyrene surfaces and expressed as minimum biofilm inhibitory concentration (MBIC). The betacyanin fraction from red spinach showed better anti-biofilm activity (MBIC: 0·313-1·25 mg ml-1 ) against five Staph. aureus strains while the betacyanin fraction from red pitahaya showed better anti-biofilm activity (MBIC: 0·313-0·625 mg ml-1 ) against four P. aeruginosa strains. Both betacyanin fraction significantly reduced hydrophobicity of Staph. aureus and P. aeruginosa strains. Numbers of Staph. aureus and P. aeruginosa attached to polystyrene were also reduced without affecting their cell viability.

    CONCLUSION: Betacyanins can act as anti-biofilm agents against the initial step of biofilm formation, particularly on a hydrophobic surface like polystyrene.

    SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first to investigate the use of betacyanin as a biofilm inhibitory agent. Betacyanin could potentially be used to reduce the risk of biofilm-associated infections.

    Matched MeSH terms: Biofilms/drug effects*
  2. Chan WY, Hickey EE, Page SW, Trott DJ, Hill PB
    J Vet Pharmacol Ther, 2019 Nov;42(6):682-692.
    PMID: 31503362 DOI: 10.1111/jvp.12811
    Otitis externa (OE) is a frequently reported disorder in dogs associated with secondary infections by Staphylococcus, Pseudomonas and yeast pathogens. The presence of biofilms may play an important role in the resistance of otic pathogens to antimicrobial agents. Biofilm production of twenty Staphylococcus pseudintermedius and twenty Pseudomonas aeruginosa canine otic isolates was determined quantitatively using a microtiter plate assay, and each isolate was classified as a strong, moderate, weak or nonbiofilm producer. Minimum biofilm eradication concentration (MBEC) of two ionophores (narasin and monensin) and three adjuvants (N-acetylcysteine (NAC), Tris-EDTA and disodium EDTA) were investigated spectrophotometrically (OD570nm ) and quantitatively (CFU/ml) against selected Staphylococcus and Pseudomonas biofilm cultures. Concurrently, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of planktonic cultures were assessed. 16/20 of the S. pseudintermedius clinical isolates were weak biofilm producers. 19/20 P. aeruginosa clinical isolates produced biofilms and were distributed almost equally as weak, moderate and strong biofilm producers. While significant antibiofilm activity was observed, no MBEC was achieved with narasin or monensin. The MBEC for NAC ranged from 5,000-10,000 µg/ml and from 20,000-80,000 µg/ml against S. pseudintermedius and P. aeruginosa, respectively. Tris-EDTA eradicated P. aeruginosa biofilms at concentrations ranging from 6,000/1,900 to 12,000/3,800 µg/ml. The MBEC was up to 16-fold and eightfold higher than the MIC/MBC of NAC and Tris-EDTA, respectively. Disodium EDTA reduced biofilm growth of both strains at concentrations of 470 µg/ml and higher. It can be concluded that biofilm production is common in pathogens associated with canine OE. NAC and Tris-EDTA are effective antibiofilm agents in vitro that could be considered for the treatment of biofilm-associated OE in dogs.
    Matched MeSH terms: Biofilms/drug effects
  3. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
    Matched MeSH terms: Biofilms/drug effects
  4. Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, Davamani F
    PLoS One, 2019;14(2):e0213079.
    PMID: 30818374 DOI: 10.1371/journal.pone.0213079
    Staphylococcus epidermidis, is a common microflora of human body that can cause opportunistic infections associated with indwelling devices. It is resistant to multiple antibiotics necessitating the need for naturally occurring antibacterial agents. Malaysian propolis, a natural product obtained from beehives exhibits antimicrobial and antibiofilm properties. Chitosan-propolis nanoparticles (CPNP) were prepared using Malaysian propolis and tested for their effect against S. epidermidis. The cationic nanoparticles depicted a zeta potential of +40 and increased the net electric charge (zeta potential) of S. epidermidis from -17 to -11 mV in a concentration-dependent manner whereas, ethanol (Eth) and ethyl acetate (EA) extracts of propolis further decreased the zeta potential from -17 to -20 mV. Confocal laser scanning microscopy (CLSM) depicted that CPNP effectively disrupted biofilm formation by S. epidermidis and decreased viability to ~25% compared to Eth and EA with viability of ~60-70%. CPNP was more effective in reducing the viability of both planktonic as well as biofilm bacteria compared to Eth and EA. At 100 μg/mL concentration, CPNP decreased the survival of biofilm bacteria by ~70% compared to Eth or EA extracts which decreased viability by only 40%-50%. The morphology of bacterial biofilm examined by scanning electron microscopy depicted partial disruption of biofilm by Eth and EA extracts and significant disruption by CPNP reducing bacterial number in the biofilm by ~90%. Real time quantitative PCR analysis of gene expression in treated bacteria showed that genes involved in intercellular adhesion such as IcaABCD, embp and other related genes were significantly downregulated by CPNP. In addition to having a direct inhibitory effect on the survival of S. epidermidis, CPNP showed synergism with the antibiotics rifampicin, ciprofloxacin, vancomycin and doxycycline suggestive of effective treatment regimens. This would help decrease antibiotic treatment dose by at least 4-fold in combination therapies thereby opening up ways of tackling antibiotic resistance in bacteria.
    Matched MeSH terms: Biofilms/drug effects
  5. Ng CK, How KY, Tee KK, Chan KG
    Genes (Basel), 2019 04 08;10(4).
    PMID: 30965610 DOI: 10.3390/genes10040282
    Quorum sensing (QS) is a cell-to-cell communication system that uses autoinducers as signaling molecules to enable inter-species and intra-species interactions in response to external stimuli according to the population density. QS allows bacteria such as Acinetobacter baumannii to react rapidly in response to environmental changes and hence, increase the chances of survival. A. baumannii is one of the causative agents in hospital-acquired infections and the number of cases has increased remarkably in the past decade. In this study, A. baumannii strain 863, a multidrug-resistant pathogen, was found to exhibit QS activity by producing N-acyl homoserine lactone. We identified the autoinducer synthase gene, which we named abaI, by performing whole genome sequencing analysis of A. baumannii strain 863. Using high resolution tandem triple quadrupole mass spectrometry, we reported that abaI of A. baumannii strain 863 produced 3-hydroxy-dodecanoyl-homoserine lactone. A gene deletion mutant was constructed, which confirmed the functionality of abaI. A growth defect was observed in the QS-deficient mutant strain. Transcriptome profiling was performed to determine the possible genes regulated by QS. Four groups of genes that showed differential expression were discovered, namely those involved in carbon source metabolism, energy production, stress response and the translation process.
    Matched MeSH terms: Biofilms/drug effects
  6. Perumal S, Mahmud R
    PMID: 24321370 DOI: 10.1186/1472-6882-13-346
    The frequent occurrences of antibiotic-resistant biofilm forming pathogens have become global issue since various measures that had been taken to curb the situation led to failure. Euphorbia hirta, is a well-known ethnomedicinal plant of Malaysia with diverse biological activities. This plant has been used widely in traditional medicine for the treatment of gastrointestinal, bronchial and respiratory ailments caused by infectious agents.
    Matched MeSH terms: Biofilms/drug effects*
  7. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, et al.
    PLoS One, 2017;12(3):e0174888.
    PMID: 28362873 DOI: 10.1371/journal.pone.0174888
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
    Matched MeSH terms: Biofilms/drug effects
  8. Madhavan P, Jamal F, Pei CP, Othman F, Karunanidhi A, Ng KP
    Mycopathologia, 2018 Jun;183(3):499-511.
    PMID: 29380188 DOI: 10.1007/s11046-018-0243-z
    Infections by non-albicans Candida species are a life-threatening condition, and formation of biofilms can lead to treatment failure in a clinical setting. This study was aimed to demonstrate the in vitro antibiofilm activity of fluconazole (FLU) and voriconazole (VOR) against C. glabrata, C. parapsilosis and C. rugosa with diverse antifungal susceptibilities to FLU and VOR. The antibiofilm activities of FLU and VOR in the form of suspension as well as pre-coatings were assessed by XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. Morphological and intracellular changes exerted by the antifungal drugs on Candida cells were examined by scanning electron microscope (SEM) and transmission electron microscope (TEM). The results of the antibiofilm activities showed that FLU drug suspension was capable of killing C. parapsilosis and C. rugosa at minimum inhibitory concentrations (MICs) of 4× MIC FLU and 256× MIC FLU, respectively. While VOR MICs ranging from 2× to 32× were capable of killing the biofilms of all Candida spp tested. The antibiofilm activities of pre-coated FLU were able to kill the biofilms at ¼× MIC FLU and ½× MIC FLU for C. parapsilosis and C. rugosa strains, respectively. While pre-coated VOR was able to kill the biofilms, all three Candida sp at ½× MIC VOR. SEM and TEM examinations showed that FLU and VOR treatments exerted significant impact on Candida cell with various degrees of morphological changes. In conclusion, a fourfold reduction in MIC50 of FLU and VOR towards ATCC strains of C. glabrata, C. rugosa and C. rugosa clinical strain was observed in this study.
    Matched MeSH terms: Biofilms/drug effects*
  9. Azizan N, Mohd Said S, Zainal Abidin Z, Jantan I
    Molecules, 2017 Dec 05;22(12).
    PMID: 29206142 DOI: 10.3390/molecules22122135
    In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis, Streptococcus mutans, Streptococcus mitis, Streptococcus salivarius, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Fusobacterium nucleatum. Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea. The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
    Matched MeSH terms: Biofilms/drug effects
  10. Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM
    Expert Rev Anti Infect Ther, 2018 11;16(11):855-864.
    PMID: 30308132 DOI: 10.1080/14787210.2018.1535898
    INTRODUCTION: Biofilm formation is a strategy for microorganisms to adapt and survive in hostile environments. Microorganisms that are able to produce biofilms are currently recognized as a threat to human health. Areas covered: Many strategies have been employed to eradicate biofilms, but several drawbacks from these methods had subsequently raised concerns on the need for alternative approaches to effectively prevent biofilm formation. One of the main mechanisms that drives a microorganism to transit from a planktonic to a biofilm-sessile state, is oxidative stress. Chemical agents that could target oxidative stress regulators, for instance antioxidants, could therefore be used to treat biofilm-associated infections. Expert commentary: The focus of this review is to summarize the function and limitation of the current anti-biofilm strategies and will propose the use of antioxidants as an alternative method to treat, prevent and eradicate biofilms. Studies have shown that water-soluble and lipid-soluble antioxidants can reduce and prevent biofilm formation, by influencing the expression of genes associated with oxidative stress. Further in vivo work should be conducted to ensure the efficacy of these antioxidants in a biological environment. Nevertheless, antioxidants are promising anti-biofilm agents, and thus is a potential solution for biofilm-associated infections in the future.
    Matched MeSH terms: Biofilms/drug effects*
  11. Hosuru Subramanya S, Bairy I, Nayak N, Amberpet R, Padukone S, Metok Y, et al.
    PLoS One, 2020;15(5):e0227725.
    PMID: 32469888 DOI: 10.1371/journal.pone.0227725
    The surge in the prevalence of drug-resistant bacteria in poultry is a global concern as it may pose an extended threat to humans and animal health. The present study aimed to investigate the colonization proportion of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae (EPE and CPE, respectively) in the gut of healthy poultry, Gallus gallus domesticus in Kaski district of Western Nepal. Total, 113 pooled rectal swab specimens from 66 private household farms and 47 commercial poultry farms were collected by systematic random sampling from the Kaski district in western Nepal. Out of 113 pooled samples, 19 (28.8%) samples from 66 backyard farms, and 15 (31.9%) from 47 commercial broiler farms were positive for EPE. Of the 38 EPE strains isolated from 34 ESBL positive rectal swabs, 31(81.6%) were identified as Escherichia coli, five as Klebsiella pneumoniae (13.2%), and one each isolate of Enterobacter species and Citrobacter species (2.6%). Based on genotyping, 35/38 examined EPE strains (92.1%) were phylogroup-1 positive, and all these 35 strains (100%) had the CTX-M-15 gene and strains from phylogroup-2, and 9 were of CTX-M-2 and CTX-M-14, respectively. Among 38 ESBL positive isolates, 9 (23.7%) were Ambler class C (Amp C) co-producers, predominant were of DHA, followed by CIT genes. Two (6.5%) E. coli strains of ST131 belonged to clade C, rest 29/31 (93.5%) were non-ST131 E. coli. None of the isolates produced carbapenemase. Twenty isolates (52.6%) were in-vitro biofilm producers. Univariate analysis showed that the odd of ESBL carriage among commercial broilers were 1.160 times (95% CI 0.515, 2.613) higher than organically fed backyard flocks. This is the first study in Nepal, demonstrating the EPE colonization proportion, genotypes, and prevalence of high-risk clone E. coli ST131 among gut flora of healthy poultry. Our data indicated that CTX-M-15 was the most prevalent ESBL enzyme, mainly associated with E. coli belonging to non-ST131clones and the absence of carbapenemases.
    Matched MeSH terms: Biofilms/drug effects
  12. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Biofilms/drug effects
  13. Ikram HM, Rasool N, Zubair M, Khan KM, Abbas Chotana G, Akhtar MN, et al.
    Molecules, 2016 Jul 27;21(8).
    PMID: 27472312 DOI: 10.3390/molecules21080977
    The present study describes several novel 2,5-biaryl-3-hexylthiophene derivatives (3a-i) synthesized via a Pd(0)-catalyzed Suzuki cross-coupling reaction in moderate to good yields. The novel compounds were also analyzed for their anti-thrombolytic, haemolytic, and biofilm inhibition activities. In addition, the anti-tumor activity was also evaluated in vitro for newly-synthesized compounds, where 3-hexyl-2,5-bis(4-(methylthio)phenyl)thiophene exhibited the best anti-tumor activity against 4T1 cells with IC50 value of 16 μM. Moreover, 2,5-bis(4-methylphenyl)-3-hexylthiophene showed the highest activity against MCF-7 cells with an IC50 value of 26.2 μM. On the other hand, the compound 2,5-bis(4-chloropheny)-3-hexylthiophene exhibited excellent biofilm inhibition activity. Furthermore, the compound 2,5-bis(3-chloro-4-fluorophenyl)-3-hexylthiophene also exhibited better anti-thrombolytic and hemolytic activity results as compared to the other newly-synthesized compounds.
    Matched MeSH terms: Biofilms/drug effects*
  14. Ahmad G, Rasool N, Ikram HM, Gul Khan S, Mahmood T, Ayub K, et al.
    Molecules, 2017 Jan 27;22(2).
    PMID: 28134790 DOI: 10.3390/molecules22020190
    The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a-2i, 4a-4i. In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine (1) directly or via N-[5-bromo-2-methylpyridine-3-yl]acetamide (3) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a-2i and 4a-4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
    Matched MeSH terms: Biofilms/drug effects
  15. AlMatar M, Albarri O, Makky EA, Köksal F
    Pharmacol Rep, 2021 Feb;73(1):1-16.
    PMID: 32946075 DOI: 10.1007/s43440-020-00160-9
    The discovery of antibiotics ought to have ended the issue of bacterial infections, but this was not the case as it has led to the evolution of various mechanisms of bacterial resistance against various antibiotics. The efflux pump remains one of the mechanisms through which organisms develop resistance against antibiotics; this is because organisms can extrude most of the clinically relevant antibiotics from the interior cell environment to the exterior environment via the efflux pumps. Efflux pumps are thought to contribute significantly to biofilm formation as highlighted by various studies. Therefore, the inhibition of these efflux pumps can be a potential way of improving the activity of antibiotics, particularly now that the discovery of novel antibiotics is becoming tedious. Efflux pump inhibitors (EPIs) are molecules that can inhibit efflux pumps; they have been considered potential therapeutic agents for rejuvenating the activity of antibiotics that have already lost their activity against bacteria. However, studies are yet to determine the specific substrates for such pumps; the effect of altered efflux activity of these pumps on biofilm formation is still being investigated. A clear knowledge of the involvement of efflux pumps in biofilm development could aid in developing new agents that can interfere with their function and help to prevent biofilms formation; thereby, improving the outcome of treatment strategies. This review focuses on the novel update of EPIs and discusses the evidence of the roles of efflux pumps in biofilm formation; the potential approaches towards overcoming the increasing problem of biofilm-based infections are also discussed.
    Matched MeSH terms: Biofilms/drug effects
  16. Suleman Ismail Abdalla S, Katas H, Chan JY, Ganasan P, Azmi F, Fauzi MB
    Mol Pharm, 2021 05 03;18(5):1956-1969.
    PMID: 33822631 DOI: 10.1021/acs.molpharmaceut.0c01033
    Gelatin hydrogels are attractive for wound applications owing to their well-defined structural, physical, and chemical properties as well as good cell adhesion and biocompatibility. This study aimed to develop gelatin hydrogels incorporated with bio-nanosilver functionalized with lactoferrin (Ag-LTF) as a dual-antimicrobial action dressing, to be used in treating infected wounds. The hydrogels were cross-linked using genipin prior to loading with Ag-LTF and characterized for their physical and swelling properties, rheology, polymer and actives interactions, and in vitro release of the actives. The hydrogel's anti-biofilm and antibacterial performances against S. aureus and P. aeruginosa as well as their cytotoxicity effects were assessed in vitro, including primary wound healing gene expression of human dermal fibroblasts (HDFs). The formulated hydrogels showed adequate release of AgNPs and LTF, with promising antimicrobial effects against both bacterial strains. The Ag-LTF-loaded hydrogel did not significantly interfere with the normal cellular functions as no alteration was detected for cell viability, migration rate, and expression of the target genes, suggesting the nontoxicity of Ag-LTF as well as the hydrogels. In conclusion, Ag-LTF-loaded genipin-cross-linked gelatin hydrogel was successfully synthesized as a new approach for fighting biofilms in infected wounds, which may be applied to accelerate healing of chronic wounds.
    Matched MeSH terms: Biofilms/drug effects
  17. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Biofilms/drug effects*
  18. Yee MS, Khiew PS, Chiu WS, Tan YF, Kok YY, Leong CO
    Colloids Surf B Biointerfaces, 2016 Dec 01;148:392-401.
    PMID: 27639489 DOI: 10.1016/j.colsurfb.2016.09.011
    Fouling of marine surfaces has been a perpetual problem ever since the days of the early sailors. The tenacious attachment of seaweed and invertebrates to man-made surfaces, notably on ship hulls, has incurred undesirable economic losses. Graphene receives great attention in the materials world for its unique combination of physical and chemical properties. Herein, we present a novel 2-step synthesis method of graphene-silver nanocomposites which bypasses the formation of graphene oxide (GO), and produces silver nanoparticles supported on graphene sheets through a mild hydrothermal reduction process. The graphene-Ag (GAg) nanocomposite combines the antimicrobial property of silver nanoparticles and the unique structure of graphene as a support material, with potent marine antifouling properties. The GAg nanocomposite was composed of micron-scaled graphene flakes with clusters of silver nanoparticles. The silver nanoparticles were estimated to be between 72 and 86nm (SEM observations) while the crystallite size of the silver nanoparticles (AgNPs) was estimated between 1 and 5nm. The nanocomposite also exhibited the SERS effect. GAg was able to inhibit Halomonas pacifica, a model biofilm-causing microbe, from forming biofilms with as little as 1.3wt.% loading of Ag. All GAg samples displayed significant biofilm inhibition property, with the sample recording the highest Ag loading (4.9wt.% Ag) associated with a biofilm inhibition of 99.6%. Moreover, GAg displayed antiproliferative effects on marine microalgae, Dunaliella tertiolecta and Isochrysis sp. and inhibited the growth of the organisms by more than 80% after 96h. The marine antifouling properties of GAg were a synergy of the biocidal AgNPs anchored on the stable yet flexible graphene sheets, providing maximum active contact surface areas to the target organisms.
    Matched MeSH terms: Biofilms/drug effects
  19. Tay ST, Lim SL, Tan HW
    PMID: 25380692 DOI: 10.1186/1472-6882-14-439
    The increasing resistance of Candida yeasts towards antifungal compounds and the limited choice of therapeutic drugs have spurred great interest amongst the scientific community to search for alternative anti-Candida compounds. Mycocins and fungal metabolites have been reported to have the potential for treatment of fungal infections. In this study, the growth inhibition of Candida species by a mycocin produced by Wickerhamomyces anomalus and a lactone compound from Aureobasidium pullulans were investigated.
    Matched MeSH terms: Biofilms/drug effects
  20. Mawang CI, Lim YY, Ong KS, Muhamad A, Lee SM
    J Appl Microbiol, 2017 Nov;123(5):1148-1159.
    PMID: 28869803 DOI: 10.1111/jam.13578
    AIMS: The potential of Dicranopteris linearis leaves' extract and its bioactive components were investigated for the first time for its disrupting ability against Staphylococcus aureus biofilms.

    METHODS AND RESULTS: The leaves of D. linearis were subjected to sonication-assisted extraction using hexane (HEX), dichloromethane, ethyl acetate and methanol (MeOH). It was found that only the MeOH fraction exhibited antimicrobial activity using broth microdilution assay; while all four fractions do not exhibit biofilm inhibition activity against S. aureusATCC 6538P, S. aureusATCC 43300, S. aureusATCC 33591 and S. aureusATCC 29213 using crystal violet assay. Among the four fractions tested, only the HEX fraction showed biofilm disrupting ability, with 60-90% disruption activity at 5 mg ml-1against all four S. aureus strains tested. Bioassay-guided purification of the active fraction has led to the isolation of α-tocopherol. α-Tocopherol does not affect the cells within the biofilms but instead affects the biofilm matrix in order to disrupt S. aureus biofilms.

    CONCLUSIONS: α-Tocopherol was identified to be the bioactive component of D. linearis with disruption activity against S. aureus biofilm matrix.

    SIGNIFICANCE AND IMPACT OF THE STUDY: The use of α-tocopherol as a biofilm disruptive agent might potentially be useful to treat biofilm-associated infections in the future.

    Matched MeSH terms: Biofilms/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links