Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Potu BK, Nampurath GK, Rao MS, Bhat KM
    Clin Ter, 2011;162(4):307-12.
    PMID: 21912817
    The aim of our study was to see the efficacy of petroleum ether extract of Cissus quadrangularis (CQ) on development of osteopenia in ovariectomy induced Wistar rats.
    Matched MeSH terms: Calcium/blood
  2. Ong LM, Narayanan P, Goh HK, Manocha AB, Ghazali A, Omar M, et al.
    Nephrology (Carlton), 2013 Mar;18(3):194-200.
    PMID: 23311404 DOI: 10.1111/nep.12029
    The objective of the study was to compare the efficacy and safety of oral paricalcitol with oral calcitriol for treating secondary hyperparathyroidism.
    Matched MeSH terms: Calcium/blood
  3. Jamaluddin EJ, Gafor AH, Yean LC, Cader R, Mohd R, Kong NC, et al.
    Clin Exp Nephrol, 2014 Jun;18(3):507-14.
    PMID: 23903802 DOI: 10.1007/s10157-013-0844-2
    Secondary hyperparathyroidism (SHPT) is common in end-stage renal disease. Our primary objective was to evaluate the efficacy of oral paricalcitol versus oral calcitriol on serum intact parathyroid hormone (iPTH) and mineral bone parameters in continuous ambulatory peritoneal dialysis (CAPD) patients with SHPT. The secondary objective was to analyze highly sensitive C-reactive protein (hsCRP) and peritoneal membrane function in both groups.
    Matched MeSH terms: Calcium/blood
  4. Chin KY, Gengatharan D, Mohd Nasru FS, Khairussam RA, Ern SL, Aminuddin SA, et al.
    Nutrients, 2016 Dec 14;8(12).
    PMID: 27983628
    Osteoporosis reduces the skeletal strength and increases the risk for fracture. It is an underdiagnosed disease in men. Annatto tocotrienol has been shown to improve bone structural indices and increase expression of bone formation genes in orchidectomized rats. This study aimed to evaluate the effects of annatto tocotrienol on biomechanical strength and calcium content of the bone in orchidectomized rats. Thirty three-month-old male Sprague-Dawley rats were randomly assigned to five groups. The baseline control (BC) group was sacrificed at the onset of the study. The sham-operated group (SHAM) received olive oil (the vehicle of tocotrienol) orally daily and peanut oil (the vehicle of testosterone) intramuscularly weekly. The remaining rats were orchidectomized and treated with three different regimens, i.e., (1) daily oral olive oil plus weekly intramuscular peanut oil injection; (2) daily oral annatto tocotrienol at 60 mg/kg plus weekly intramuscular peanut oil injection; (3) daily oral olive oil plus weekly intramuscular testosterone enanthate injection at 7 mg/kg. Blood, femur and tibia of the rats were harvested at the end of the two-month treatment period for the evaluation of serum total calcium and inorganic phosphate levels, bone biomechanical strength test and bone calcium content. Annatto-tocotrienol treatment improved serum calcium level and tibial calcium content (p < 0.05) but it did not affect femoral biomechanical strength (p > 0.05). In conclusion, annatto-tocotrienol at 60 mg/kg augments bone calcium level by preventing calcium mobilization into the circulation. A longer treatment period is needed for annatto tocotrienol to exert its effects on bone strength.
    Matched MeSH terms: Calcium/blood
  5. Fong CY, Kong AN, Noordin M, Poh BK, Ong LC, Ng CC
    Eur. J. Paediatr. Neurol., 2018 Jan;22(1):155-163.
    PMID: 29122496 DOI: 10.1016/j.ejpn.2017.10.007
    INTRODUCTION: Children with epilepsy on long-term antiepileptic drugs (AEDs) are at risk of low bone mineral density (BMD). The aims of our study were to evaluate the prevalence and determinants of low BMD among Malaysian children with epilepsy.

    METHOD: Cross-sectional study of ambulant children with epilepsy on long-term AEDs for >1 year seen in a tertiary hospital in Malaysia from 2014 to 2015. Detailed assessment of anthropometric measurements; environmental lifestyle risk factors; serum vitamin D, calcium and parathyroid hormone levels; genotyping of single nucleotide polymorphisms of genes in vitamin D and calcium metabolism; and lumbar spine BMD were obtained. Low BMD was defined as BMD Z-score ≤ -2.0 SD.

    RESULTS: Eighty-seven children with mean age of 11.9 years (56 males) participated in the study. The prevalence of low lumbar BMD was 21.8% (19 patients). Multivariate logistic regression analysis identified polytherapy >2 AEDs (OR: 7.86; 95% CI 1.03-59.96), small frame size with wrist breadth of <15th centile (OR 14.73; 95% CI 2.21-98.40), and body mass index Z-score 2 AEDs, underweight or with small frame size as they are at higher risk of having low BMD.

    Matched MeSH terms: Calcium/blood
  6. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Calcium/blood
  7. Hassan BA, Yusoff ZB, Hassali MA, Othman SB, Weiderpass E
    Asian Pac J Cancer Prev, 2012;13(9):4373-8.
    PMID: 23167346
    INTRODUCTION: Hypercalcemia is mainly caused by bone resorption due to either secretion of cytokines including parathyroid hormone-related protein (PTHrP) or bone metastases. However, hypercalcemia may occur in patients with or without bone metastases. The present study aimed to describe the effect of chemotherapy treatment, regimens and doses on calcium levels among breast and lung cancer patients with hypercalcemia.

    METHODS: We carried a review of medical records of breast and lung cancer patients hospitalized in years 2003 and 2009 at Penang General Hospital, a public tertiary care center in Penang Island, north of Malaysia. Patients with hypercalcemia (defined as a calcium level above 10.5 mg/dl) at the time of cancer diagnosis or during cancer treatment had their medical history abstracted, including presence of metastasis, chemotherapy types and doses, calcium levels throughout cancer treatment, and other co-morbidity. The mean calcium levels at first hospitalization before chemotherapy were compared with calcium levels at the end of or at the latest chemotherapy treatment. Statistical analysis was conducted using the Chi-square test for categorical data, logistic regression test for categorical variables, and Spearman correlation test, linear regression and the paired sample t tests for continuous data.

    RESULTS: Of a total 1,023 of breast cancer and 814 lung cancer patients identified, 292 had hypercalcemia at first hospitalization or during cancer treatment (174 breast and 118 lung cancer patients). About a quarter of these patients had advanced stage cancers: 26.4% had mild hypercalcemia (10.5-11.9 mg/dl), 55.5% had moderate (12-12.9 mg/dl), and 18.2% severe hypercalcemia (13-13.9; 14-16 mg/dl). Chemotherapy lowered calcium levels significantly both in breast and lung cancer patients with hypercalcemia; in particular with chemotherapy type 5-flurouracil+epirubicin+cyclophosphamide (FEC) for breast cancer, and gemcitabine+cisplatin in lung cancer.

    CONCLUSION: Chemotherapy decreases calcium levels in breast and lung cancer cases with hypercalcemia at cancer diagnosis, probably by reducing PTHrP levels.

    Matched MeSH terms: Calcium/blood
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links