Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Tan KW, Graf BA, Mitra SR, Stephen ID
    PLoS One, 2015;10(7):e0133445.
    PMID: 26186449 DOI: 10.1371/journal.pone.0133445
    Consumption of dietary carotenoids or carotenoid supplements can alter the color (yellowness) of human skin through increased carotenoid deposition in the skin. As fruit and vegetables are the main dietary sources of carotenoids, skin yellowness may be a function of regular fruit and vegetable consumption. However, most previous studies have used tablets or capsules to supplement carotenoid intake, and less is known of the impact of increased fruit and vegetable consumption on skin color. Here, we examined skin color changes in an Asian population (Malaysian Chinese ethnicity) over a six week dietary intervention with a carotenoid-rich fruit smoothie. Eighty one university students (34 males, 47 females; mean age 20.48) were assigned randomly to consuming either a fruit smoothie (intervention group) or mineral water (control group) daily for six weeks. Participants' skin yellowness (CIELab b*), redness (a*) and luminance (L*) were measured at baseline, twice during the intervention period and at a two-week follow-up, using a handheld reflectance spectrophotometer. Results showed a large increment in skin yellowness (p<0.001) and slight increment in skin redness (p<0.001) after 4 weeks of intervention for participants in the intervention group. Skin yellowness and skin redness remained elevated at the two week follow up measurement. In conclusion, intervention with a carotenoid-rich fruit smoothie is associated with increased skin redness and yellowness in an Asian population. Changes in the reflectance spectrum of the skin suggest that this color change was caused by carotenoid deposition in the skin.
    Matched MeSH terms: Carotenoids/analysis
  2. Irna C, Jaswir I, Othman R, Jimat DN
    J Diet Suppl, 2018 Nov 02;15(6):805-813.
    PMID: 29185824 DOI: 10.1080/19390211.2017.1387885
    Astaxanthin is one of the main carotenoid pigments. It has beneficial effects on the immune system of the human body due to its powerful antioxidant properties. The application of this bioactive compound can be found to be significant in the food, pharmaceutical, and cosmetics industries. The aim of this research was to investigate astaxanthin yield from six species of Malaysian shrimp carapace. Six types of shrimp species-Parapenaeopsis sculptili, Metapenaeus lysianassa, Macrobrachium rosenbergii, Metapenaeopsis hardwickii, Penaeus merguiensis, and Penaeus monodon-were used to investigate total carotenoid content and astaxanthin yield. The investigation was carried out using chemical extraction and high-pressure processing (HPP) methods at 210 MPa, for a period of 10 min with a solvent mixture of acetone and methanol (7:3, v/v). HPP was proven to have a significant impact in increasing the total carotenoid content and astaxanthin yield. The highest total carotenoid content and astaxanthin yield is shown to be contained in the Penaeus monodon species. Total carotenoid was increased from 46.95 µg/ml using chemical extraction to 68.26 µg/ml using HPP; yield of astaxanthin was increased from 29.44 µg/gdw using chemical extraction to 59.9744 µg/gdw using HPP. Therefore, comparison between the HPP and chemical extraction methods showed that HPP is more advantageous with higher astaxanthin yield, higher quality, and shorter extraction time.
    Matched MeSH terms: Carotenoids/analysis
  3. Summpunn P, Panpipat W, Manurakchinakorn S, Bhoopong P, Cheong LZ, Chaijan M
    Molecules, 2022 Aug 14;27(16).
    PMID: 36014418 DOI: 10.3390/molecules27165180
    Indigenous southern Thai non-glutinous rice varieties Kaab Dum, Khai Mod Rin, Yar Ko, Yoom Noon, and Look Lai made under four different processing conditions, white rice, brown rice, germinated brown rice, and rice grass, were assessed for antioxidant components and in vitro antioxidative activities. According to the findings, rice’s antioxidant components and antioxidant activity were considerably impacted by both variety and processing. High levels of total extractable phenolic compounds (164−314 mg gallic acid equivalent (GAE)/kg, dry weight (dw)) and carotenoid (0.92−8.65 mg/100 g, dw) were found in all rice varieties, especially in rice grass and germinated brown rice, indicating that milling to generate white rice had an adverse effect on those components. Additionally, after germination, a higher γ-oryzanol concentration (9−14 mg/100 g, dw) was found. All rice varieties had higher ascorbic acid, phenolic compound, and carotenoid contents after sprouting. Overall, Yoom Noon rice grass had the highest total extractable phenolic content (p < 0.05). The rice grass from Yoom Noon/Look Lai/Kaab Dum had the highest ascorbic acid content (p < 0.05). The total carotenoid concentration of Look Lai rice grass was the highest, and Yoom Noon’s germinated brown rice had the highest γ-oryzanol content (p < 0.05). All rice varieties’ aqueous extracts had remarkable ABTS free radical scavenging activity, with Khai Mod Rin reaching the highest maximum value of 42.56 mmol Trolox equivalent/kg dw. Other antioxidant mechanisms, however, were quite low. Compared to germinated brown rice, brown rice, and white rice, rice grass often tended to have stronger antioxidant activity. Yar Ko rice grass was found to have the highest DPPH free radical scavenging activity (3.8 mmol Trolox equivalent/kg dw) and ferric reducing antioxidant power (FRAP) (4.6 mmol Trolox equivalent/kg dw) (p < 0.05). Khai Mod Rice grass had the most pronounced metal chelation activity (1.14 mmol EDTA equivalent/kg dw) (p < 0.05). The rice variety and processing conditions, therefore, influenced the antioxidant compounds and antioxidative properties of Thai indigenous rice. The results can be used as a guide to select the optimal rice variety and primary processing in order to satisfy the needs of farmers who want to produce rice as a functional ingredient and to promote the consumption of indigenous rice by health-conscious consumers.
    Matched MeSH terms: Carotenoids/analysis
  4. Chan PT, Matanjun P
    Food Chem, 2017 Apr 15;221:302-310.
    PMID: 27979207 DOI: 10.1016/j.foodchem.2016.10.066
    A study on the proximate composition, minerals, vitamins, carotenoids, amino acids, fatty acids profiles and some physicochemical properties of freeze dried Gracilaria changii was conducted. It was discovered that this seaweed was high in dietary fibre (64.74±0.82%), low in fat (0.30±0.02%) and Na/K ratio (0.12±0.02). The total amino acid content was 91.90±7.70% mainly essential amino acids (55.87±2.15mgg(-1)) which were comparable to FAO/WHO requirements. The fatty acid profiles were dominated by the polyunsaturated fatty acids particularly docosahexaenoic (48.36±6.76%) which led to low ω6/ω3, atherogenic, and thrombogenic index. The physicochemical properties of this seaweed namely the water holding and the swelling capacity were comparable to some commercial fibre rich products. This study suggested that G. changii could be potentially used as ingredients to improve nutritive value and texture of functional foods for human consumption.
    Matched MeSH terms: Carotenoids/analysis*
  5. Wong JY, Matanjun P, Ooi YB, Chia KF
    Int J Food Sci Nutr, 2013 Aug;64(5):621-31.
    PMID: 23368987 DOI: 10.3109/09637486.2013.763910
    This study was carried out to characterize phenolic compounds, carotenoids, vitamins and the antioxidant activity of selected wild edible plants. Plant extracts were purified, and phenolic compounds comprising 11 phenolic acids (hydroxybenzoic acid and hydrocinnamic acid) and 33 flavonoids (including catechin, glycosides and aglycones) were analysed using High Performance Liquid Chromatography - Diode Array Detector (HPLC-DAD). Furthermore, the contents of ascorbic acid and tocopherol ((α and γ tocopherol) and carotenoids (lutein and β-carotene) were also determined. The major phenolics identified consisted of glycosides of flavones (apigenin and luteolin) and flavonols (kaempferol and quercetin). Among the phenolic acids identified after hydrolysis, coumaric acid was the predominant phenolic acid in all the extracts of wild plants. Ascorbic acid [53.8 mg/100 g fresh weight (FW)] and β-carotene (656.5 mg/100 g FW) showed the highest content in the leaf of Heckeria umbellatum. In conclusion, the leaves of H. umbellatum, Aniseia martinicensis and Gonostegia hirta have excellent potential in the future to emerge as functional ingredients.
    Matched MeSH terms: Carotenoids/analysis
  6. Khoo HE, Ismail A, Mohd-Esa N, Idris S
    Plant Foods Hum Nutr, 2008 Dec;63(4):170-5.
    PMID: 18810641 DOI: 10.1007/s11130-008-0090-z
    This study was conducted to evaluate the total carotene content (TCC) and beta carotene (BC) in the selected underutilized tropical fruits. TCC of underutilized fruits estimated by spectrophotometric method was in the range of 1.4-19.8 mg/100 g edible portion. The TCC of these fruits decreased in the order: Jentik-jentik > Durian Nyekak 2 > Durian Nyekak 1 > Cerapu 2 > Cerapu 1 > Tampoi Kuning > Bacang 1 > Kuini > Jambu Mawar > Bacang 2 > Durian Daun > Bacang 3 > Tampoi Putih > Jambu Susu. BC contents estimated by HPLC method were highest in Jentik-jentik, followed by Cerapu 2, Durian Nyekak 2, Tampoi Kuning, Durian Nyekak 1, and Cerapu 1, which had a range of 68-92% of BC in TCC. These underutilized fruits have an acceptable amount of carotenoids that are potential antioxidant fruits.
    Matched MeSH terms: Carotenoids/analysis*
  7. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA
    Lipids, 2005 Apr;40(4):429-32.
    PMID: 16028723
    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
    Matched MeSH terms: Carotenoids/analysis*
  8. Foo SC, Yusoff FM, Ismail M, Basri M, Yau SK, Khong NMH, et al.
    J Biotechnol, 2017 Jan 10;241:175-183.
    PMID: 27914891 DOI: 10.1016/j.jbiotec.2016.11.026
    Natural antioxidants from sustainable sources are favoured to accommodate worldwide antioxidant demand. In addition to bioprospecting for natural and sustainable antioxidant sources, this study aimed to investigate the relationship between the bioactives (i.e. carotenoid and phenolic acids) and the antioxidant capacities in fucoxanthin-producing algae. Total carotenoid, phenolic acid, fucoxanthin contents and fatty acid profile of six species of algae (five microalgae and one macroalga) were quantified followed by bioactivity evaluation using four antioxidant assays. Chaetoceros calcitrans and Isochrysis galbana displayed the highest antioxidant activity, followed by Odontella sinensis and Skeletonema costatum which showed moderate bioactivities. Phaeodactylum tricornutum and Saccharina japonica exhibited the least antioxidant activities amongst the algae species examined. Pearson correlation and multiple linear regression showed that both carotenoids and phenolic acids were significantly correlated (p<0.05) with the antioxidant activities, indicating the influence of these bioactives on the algal antioxidant capacities.
    Matched MeSH terms: Carotenoids/analysis
  9. Ahmed IA, Mikail MA, Bin Ibrahim M, Bin Hazali N, Rasad MS, Ghani RA, et al.
    Food Chem, 2015 Apr 1;172:778-87.
    PMID: 25442620 DOI: 10.1016/j.foodchem.2014.09.122
    Baccaurea angulata is an underutilised tropical fruit of Borneo Island of Malaysia. The effect of solvents was examined on yield, total phenolic (TPC), total flavonoids (TFC), total carotene content (TCC), free radical scavenging activities and lipid peroxidation inhibition activities. The results indicated that the pulp (edible portion) had the highest yield, while methanol extracts were significantly (p < 0.01) found to contain higher TPC, TFC and TCC than phosphate buffered saline (PBS) extracts for all the fruits parts. The methanol extracts also showed remarkable antiradical activity and significant lipid peroxidation inhibition activities, with their IC50 results highly comparable to that of commercial blueberry. The variations in the results among the extracts suggest different interactions, such as negative or antagonistic (interference), additive and synergistic effect interactions. The study indicated that B. angulata like other underutilised tropical fruits contained remarkable primary antioxidants. Thus, the fruit has the potential to be sources of antioxidant components.
    Matched MeSH terms: Carotenoids/analysis
  10. Saiman MZ, Mustafa NR, Verpoorte R
    Methods Mol Biol, 2018;1815:437-455.
    PMID: 29981141 DOI: 10.1007/978-1-4939-8594-4_31
    The plant Catharanthus roseus is a rich source of terpenoid indole alkaloids (TIA). Some of the TIA are important as antihypertensive (ajmalicine) and anticancer (vinblastine and vincristine) drugs. However, production of the latter is very low in the plant. Therefore, in vitro plant cell cultures have been considered as a potential supply of these chemicals or their precursors. Some monomeric alkaloids can be produced by plant cell cultures, but not on a level feasible for commercialization, despite extensive studies on this plant that deepened the understanding of the TIA biosynthesis and its regulation. In order to analyze the metabolites in C. roseus cell cultures, this chapter presents the method of TIA, carotenoids, and phytosterols analyses. Furthermore, an NMR-based metabolomics approach to study C. roseus cell culture is described.
    Matched MeSH terms: Carotenoids/analysis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links