Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Hii KS, Lim PT, Kon NF, Usup G, Gu H, Leaw CP
    Gene, 2019 Aug 30;711:143950.
    PMID: 31255736 DOI: 10.1016/j.gene.2019.143950
    The marine dinoflagellate Alexandrium minutum is known to produce saxitoxins that cause paralytic shellfish poisoning in human worldwide through consumption of the contaminated shellfish mollusks. Despite numerous studies on the growth physiology and saxitoxin production of this species, the knowledge on the molecular basis of nutrient uptakes in relation to toxin production in this species is limited. In this study, relative expressions of the high-affinity transporter genes of nitrate, ammonium, and phosphate (AmNrt2, AmAmt1 and AmPiPT1) and the assimilation genes, nitrate reductase (AmNas), glutamine synthase (AmGSIII) and carbamoyl phosphate synthase (AmCPSII) from A. minutum were studied in batch clonal culture condition with two nitrogen sources (nitrate: NO3- or ammonium: NH4+) under different N:P ratios (high-P: N:P of 14 and 16, and low-P: N:P of 155). The expression of AmAmt1 was suppressed in excess NH4+-grown condition but was not observed in AmNrt2 and AmNas. Expressions of AmAmt1, AmNrt2, AmNas, AmGSIII, AmCPSII, and AmPiPT1 were high in P-deficient condition, showing that A. minutum is likely to take up nutrients for growth under P-stress condition. Conversely, relative expression of AmCPSII was incongruent with cell growth, but was well correlated with toxin quota, suggesting that the gene might involve in arginine metabolism and related toxin production pathway. The expression of AmGSIII is found coincided with higher toxin production and is believed to involve in mechanism to detoxify the cells from excess ammonium stress. The gene regulation observed in this study has provided better insights into the ecophysiology of A. minutum in relation to its adaptive strategies in unfavorable environments.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  2. Chowdhury SR, Ng MH, Hassan NS, Aminuddin BS, Ruszymah BH
    Hum. Cell, 2012 Sep;25(3):69-77.
    PMID: 22968953
    This study was undertaken in order to identify the best culture strategy to expand and osteogenic differentiation of human bone marrow stem cells (hBMSCs) for subsequent bone tissue engineering. In this regard, the experiment was designed to evaluate whether it is feasible to bypass the expansion phase during hBMSCs differentiation towards osteogenic lineages by early induction, if not identification of suitable culture media for enhancement of hBMSCs expansion and osteogenic differentiation. It was found that introduction of osteogenic factors in alpha-minimum essential medium (αMEM) during expansion phase resulted in significant reduction of hBMSCs growth rate and osteogenic gene expressions. In an approach to identify suitable culture media, the growth and differentiation potential of hBMSCs were evaluated in αMEM, F12:DMEM (1:1; FD), and FD with growth factors. It was found that αMEM favors the expansion and osteogenic differentiation of hBMSCs compared to that in FD. However, supplementation of growth factors in FD, only during expansion phase, enhances the hBMSCs growth rate and significantly up-regulates the expression of CBFA-1 (the early markers of osteogenic differentiation) during expansion, and, other osteogenic genes at the end of induction compared to the cells in αMEM and FD. These results suggested that the expansion and differentiation phase of the hBMSCs should be separately and carefully timed. For bone tissue engineering, supplementation of growth factors in FD only during the expansion phase was sufficient to promote hBMSCs expansion and differentiation, and preferably the most efficient culture condition.
    Matched MeSH terms: Cell Culture Techniques/methods*
  3. Fatimah SS, Ng SL, Chua KH, Hayati AR, Tan AE, Tan GC
    Hum. Cell, 2010 Nov;23(4):141-51.
    PMID: 21166885 DOI: 10.1111/j.1749-0774.2010.00096.x
    Human amniotic epithelial cells (hAECs) are potentially one of the key players in tissue engineering due to their easy availability. The aim of the present study was to develop an optimal isolation and transportation technique, as well as to determine the immunophenotype and epithelial gene expression of hAECs. Amnion was mechanically peeled off from the chorion and digested with trypsin-ethylenediaminetetraacetic acid. The isolated hAECs were cultured in medium containing 10 ng/mL epidermal growth factor until P4. The epithelial gene expression, cell surface antigen and protein expression of hAECs were analyzed by quantitative polymerase chain reaction, flow cytometry and immunocytochemistry. hAECs were also cultured in adipogenic, osteogenic and neurogenic induction media. The best cell yield of hAECs was seen in the digestion of 15 pieces of amnion (2 × 2 cm) and isolated 30 min after digestion with trypsin. F12:Dulbecco's modified eagle medium was the best medium for short term storage at 4 °C. hAECs expressed CD9, CD44, CD73 and CD90, and negligibly expressed CD31, CD34, CD45 and CD117. After serial passage, CK3, CK19 and involucrin gene expressions were upregulated, while p63, CK1 and CK14 gene expressions were downregulated. Sustained gene expressions of integrin β1 and CK18 were observed. At initial culture, these cells might have stem-like properties. However, they differentiated after serial passage. Nonetheless, hAECs have epithelial stem cell characteristics and have the potential to differentiate into corneal epithelial cells. Further investigations are still needed to elucidate the mechanism of differentiation involved and to optimize the culture condition for long term in vitro culture.
    Matched MeSH terms: Cell Culture Techniques/methods*
  4. Govindasamy V, Ronald VS, Totey S, Din SB, Mustafa WM, Totey S, et al.
    In Vitro Cell Dev Biol Anim, 2010 Oct;46(9):764-73.
    PMID: 20725801 DOI: 10.1007/s11626-010-9332-0
    Stem cells isolated from dental pulp possess the capacity for self-renewal and the potential for multi-lineage differentiation. However, dental pulp stem cells have different characteristics in terms of their culture conditions. The success of stem cells culture is governed by its micro-environmental niche. Therefore, we studied the effects of culture niche on long-term expansion of dental pulp stem cells in terms of cell morphology, growth kinetics, senescence pattern, cell surface marker expression differentiation capacity, and seeding plating density of dental pulp stem cells in four different, widely used media composition Among the various basal media tested, α-minimum essential media and knock out-minimum essential media supplemented with 10% fetal bovine serum were found to be the most optimal media composition in preserving the phenotypic characteristics and differentiation potential for prolonged periods as compared with DMEM-F12 and DMEM-LG. Plating density has been shown to affect overall yield. As a conclusion, the adoption of an appropriate culture system significantly improved cell yield, thus enabling the attainment of sufficient yields for therapeutic applications economizing in terms of cost of production and minimizing seeding cell density for maximum yield.
    Matched MeSH terms: Cell Culture Techniques/methods*
  5. Norhafini H, Huong KH, Amirul AA
    Int J Biol Macromol, 2019 Mar 15;125:1024-1032.
    PMID: 30557643 DOI: 10.1016/j.ijbiomac.2018.12.121
    P(3HB-co-4HB) with a high 4HB monomer composition was previously successfully produced using the transformant Cupriavidus malaysiensis USMAA1020 containing an additional copy of the PHA synthase gene. In this study, high PHA density fed-batch cultivation strategies were developed for such 4HB-rich P(3HB-co-4HB). The pulse, constant and mixed feeding strategies resulted in high PHA accumulation, with a PHA content of 74-92 wt% and 4HB monomer composition of 92-99 mol%. The pulse-feed of carbon and nitrogen resulted in higher PHA concentration (30.7 g/L) than carbon alone (22.3 g/L), suggesting that a trace amount of nitrogen is essential to support cell density for PHA accumulation. Constant feeding was found to be a more feasible strategy than mixed feeding, since the latter caused a drastic fluctuation in the C/N ratio, as evidenced by higher biomass formation indicating more carbon flux towards the competitive TCA pathway. A two-times carbon and nitrogen pulse feeding was the most optimal strategy achieving 92 wt% accommodation of the total biomass, with the highest PHA concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. The strategy has kept the C/N at optimal ratio during the active PHA-producing phase. This is the first report of the production of high PHA density for 4HB-rich P(3HB-co-4HB).
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  6. Koh B, Sulaiman N, Fauzi MB, Law JX, Ng MH, Yuan TL, et al.
    Int J Mol Sci, 2023 Feb 13;24(4).
    PMID: 36835154 DOI: 10.3390/ijms24043745
    Xeno-free three-dimensional cultures are gaining attention for mesenchymal stem cell (MSCs) expansion in clinical applications. We investigated the potential of xeno-free serum alternatives, human serum and human platelet lysate, to replace the current conventional use of foetal bovine serum for subsequent MSCs microcarrier cultures. In this study, Wharton's Jelly MSCs were cultured in nine different media combinations to identify the best xeno-free culture media for MSCs culture. Cell proliferation and viability were identified, and the cultured MSCs were characterised in accordance with the minimal criteria for defining multipotent mesenchymal stromal cells by the International Society for Cellular Therapy (ISCT). The selected culture media was then used in the microcarrier culture of MSCs to determine the potential of a three-dimensional culture system in the expansion of MSCs for future clinical applications, and to identify the immunomodulatory potential of cultured MSCs. Low Glucose DMEM (LG) + Human Platelet (HPL) lysate media appeared to be good candidates for replacing conventional MSCs culture media in our monolayer culture system. MSCs cultured in LG-HPL achieved high cell yield, with characteristics that remained as described by ISCT, although the overall mitochondrial activity of the cells was lower than the control and the subsequent effects remained unknown. MSC microcarrier culture, on the other hand, showed comparable cell characteristics with monolayer culture, yet had stagnated cell proliferation, which is potentially due to the inactivation of FAK. Nonetheless, both the MSCs monolayer culture and the microcarrier culture showed high suppressive activity on TNF-α, and only the MSC microcarrier culture has a better suppression of IL-1 secretion. In conclusion, LG-HPL was identified as a good xeno-free media for WJMSCs culture, and although further mechanistic research is needed, the results show that the xeno-free three-dimensional culture maintained MSC characteristics and improved immunomodulatory activities, suggesting the potential of translating the monolayer culture into this culture system in MSC expansion for future clinical application.
    Matched MeSH terms: Cell Culture Techniques/methods
  7. Arifin MA, Mel M, Abdul Karim MI, Ideris A
    J Biomed Biotechnol, 2010;2010:586363.
    PMID: 20625497 DOI: 10.1155/2010/586363
    The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was 1.93 x 10(6) cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about 7.95 x 10(5) cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on 3( * *)(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.
    Matched MeSH terms: Cell Culture Techniques/methods
  8. Ariffin H, Hassan MA, Shah UK, Abdullah N, Ghazali FM, Shirai Y
    J Biosci Bioeng, 2008 Sep;106(3):231-6.
    PMID: 18929997 DOI: 10.1263/jbb.106.231
    In this study, endoglucanase was produced from oil palm empty fruit bunch (OPEFB) by a locally isolated aerobic bacterium, Bacillus pumilus EB3. The effects of the fermentation parameters such as initial pH, temperature, and nitrogen source on the endoglucanase production were studied using carboxymethyl cellulose (CMC) as the carbon source. Endoglucanase from B. pumilus EB3 was maximally secreted at 37 degrees C, initial pH 7.0 with 10 g/l of CMC as carbon source, and 2 g/l of yeast extract as organic nitrogen source. The activity recorded during the fermentation was 0.076 U/ml. The productivity of the enzyme increased twofold when 2 g/l of yeast extract was used as the organic nitrogen supplement as compared to the non-supplemented medium. An interesting finding from this study is that pretreated OPEFB medium showed comparable results to CMC medium in terms of enzyme production with an activity of 0.063 U/ml. As OPEFB is an abundant solid waste at palm oil mills, it has the potential of acting as a substrate in cellulase production.
    Matched MeSH terms: Cell Culture Techniques/methods*
  9. Wong YM, Show PL, Wu TY, Leong HY, Ibrahim S, Juan JC
    J Biosci Bioeng, 2019 Feb;127(2):150-159.
    PMID: 30224189 DOI: 10.1016/j.jbiosc.2018.07.012
    Bio-hydrogen production from wastewater using sludge as inoculum is a sustainable approach for energy production. This study investigated the influence of initial pH and temperature on bio-hydrogen production from dairy wastewater using pretreated landfill leachate sludge (LLS) as an inoculum. The maximum yield of 113.2 ± 2.9 mmol H2/g chemical oxygen demand (COD) (12.8 ± 0.3 mmol H2/g carbohydrates) was obtained at initial pH 6 and 37 °C. The main products of volatile fatty acids were acetate and butyrate with the ratio of acetate:butyrate was 0.4. At optimum condition, Gibb's free energy was estimated at -40 kJ/mol, whereas the activation enthalpy and entropy were 65 kJ/mol and 0.128 kJ/mol/l, respectively. These thermodynamic quantities suggest that bio-hydrogen production from dairy wastewater using pretreated LLS as inoculum was effective and efficient. In addition, genomic and bioinformatics analyses were performed in this study.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  10. Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR
    J Biosci Bioeng, 2019 Apr;127(4):492-498.
    PMID: 30416001 DOI: 10.1016/j.jbiosc.2018.09.004
    Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
    Matched MeSH terms: Cell Culture Techniques/methods
  11. Ng HS, Chai CXY, Chow YH, Loh WLC, Yim HS, Tan JS, et al.
    J Biosci Bioeng, 2018 May;125(5):585-589.
    PMID: 29339003 DOI: 10.1016/j.jbiosc.2017.12.010
    Xylanase enzyme degrades linear polysaccharide β-1,4 xylan and the hemicellulose of the plant cell wall. There is a growing demand in finding a cost-effective alternative for industrial scale production of xylanase with high purity for pharmaceutical applications. In this study, an alcohol/salt aqueous biphasic system (ABS) was adopted to recover xylanase from the Bacillus subtilis fermentation broth. The effects of several ABS parameters such as types and concentrations of alcohols and salts (i.e., sulphate, phosphate, and citrate), amount of crude loading and pH of the system on the recovery of xylanase were investigated. Partition coefficient of xylanase (KE), selectivity (S) and yield (YT) of xylanase in top phase of the ABS were measured. Highest KE (6.58 ± 0.05) and selectivity (4.84 ± 0.33) were recorded in an ABS of pH 8 composed of 26% (w/w) 1-propanol, 18% (w/w) ammonium sulphate. High YT of 71.88% ± 0.15 and a purification fold (PFT) of 5.74 ± 0.33 were recorded with this optimum recovery of xylanase using alcohol/salt ABS. The purity of xylanase recovered was then qualitatively verified with sodium dodecyl sulphate (SDS) gel electrophoresis. The SDS profile revealed the purified xylanase was successfully obtained in the top phase of the one-step 1-propanol/sulphate ABS with a distinct single band.
    Matched MeSH terms: Batch Cell Culture Techniques/methods
  12. Zainab-L I, Sudesh K
    J Biotechnol, 2019 Nov 10;305:35-42.
    PMID: 31493421 DOI: 10.1016/j.jbiotec.2019.09.001
    The cost of polyhydroxyalkanoates (PHAs) can be reduced by improving their productivity and recovery. In this study, we attempted to obtain a high cell density culture from a 13 L bioreactor and subsequently improved the recently developed biological recovery process using mealworms to obtain the PHA granules. A cell dry weight of 161 g/L containing 68-70 wt% P(3HB) was obtained. The freeze-dried cells contained a significant amount of mineral salts from the culture medium which reduced the cells' palatability for the mealworms. A simple washing procedure with water was sufficient to remove the residual mineral salts and this improved the cells' consumption by up to 12.5% of the mealworms' body weight. As a result, one kilogram of mealworms consumed 125 g of the washed cells daily and 87.2 g of feacal pellets were recovered, which was almost twice the weight of the unwashed cells. In addition, it also improved the purity of the PHA in the faecal pellets to a value <90% upon washing with water to remove the water-soluble compounds. This study has demonstrated a significant improvement in the production and recovery of PHA. In addition, the resulting mealworms showed a significant increase in protein content up to 79% and a decrease in fat content down to 8.3% of its dry weight.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  13. Seman WM, Bakar SA, Bukhari NA, Gaspar SM, Othman R, Nathan S, et al.
    J Biotechnol, 2014 Aug 20;184:219-28.
    PMID: 24910973 DOI: 10.1016/j.jbiotec.2014.05.034
    A Pichia pastoris transformant carrying the cutinase cDNA of Glomerella cingulata was over-expressed in a 5L bioreactor (2.0L working volume) under fed-batch conditions. Bioreactor experiments rely on varying selected parameters in repeated rounds of optimisation: here these included duration of induction, pH and temperature. Highest cell densities (320gL(-1) wet cell weight) with a cutinase production of 3800mgL(-1) and an activity of 434UmL(-1) were achieved 24h after induction with methanol in basal salt medium (at pH 5 and 28°C). Characterisation of the cutinase showed that it was stable between pH 6 and pH 11, had an optimum pH of 8.0 and retained activity for 30min at 50°C (optimum temperature 25°C).The preferred substrates of G. cingulata cutinase were the medium- to long-chain ρ-nitrophenyl esters of ρ-nitrophenylcaprylate (C8), ρ-nitrophenyllaurate (C12) and ρ-nitrophenylmyristate (C14), with the highest catalytic efficiency, kcat/Km of 7.7±0.7mM(-1)s(-1) for ρ-nitrophenylcaprylate. Microscopic analyses showed that the G. cingulata cutinase was also capable of depolymerising the high molecular weight synthetic polyester, polyethylene terephthalate.
    Matched MeSH terms: Batch Cell Culture Techniques/methods*
  14. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Cell Culture Techniques/methods
  15. Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, et al.
    J Cell Biochem, 2012 Oct;113(10):3153-64.
    PMID: 22615164 DOI: 10.1002/jcb.24193
    The clinical application of human bone marrow derived multipotent mesenchymal stromal cells (MSC) requires expansion, cryopreservation, and transportation from the laboratory to the site of cell implantation. The cryopreservation and thawing process of MSCs may have important effects on the viability, growth characteristics and functionality of these cells both in vitro and in vivo. More importantly, MSCs after two rounds of cryopreservation have not been as well characterized as fresh MSCs from the transplantation perspective. The objective of this study was to determine if the effect of successive cryopreservation of pooled MSCs during the exponential growth phase could impair their morphology, phenotype, gene expression, and differentiation capabilities. MSCs cryopreserved at passage 3 (cell bank) were thawed and expanded up to passage 4 and cryopreserved for the second time. These cells (passive) were then thawed and cultured up to passage 6, and, at each passage MSCs were characterized. As control, pooled passage 3 cells (active) after one round of cryopreservation were taken all the way to passage 6 without cryopreservation. We determined the growth rate of MSCs for both culture conditions in terms of population doubling number (PDN) and population doubling time (PDT). Gene expression profiles for pluripotency markers and tissue specific markers corresponding to neuroectoderm, mesoderm and endoderm lineages were also analyzed for active and passive cultures of MSC. The results show that in both culture conditions, MSCs exhibited similar growth properties, phenotypes and gene expression patterns as well as similar differentiation potential to osteo-, chondro-, and adipo-lineages in vitro. To conclude, it appears that successive or multiple rounds of cryopreservation of MSCs did not alter the fundamental characteristics of these cells and may be used for clinical therapy.
    Matched MeSH terms: Cell Culture Techniques/methods
  16. Abd Rahim MH, Lim EJ, Hasan H, Abbas A
    J Microbiol Methods, 2019 09;164:105672.
    PMID: 31326443 DOI: 10.1016/j.mimet.2019.105672
    PURPOSE: This study aimed to assess the effect of nitrogen, salt and pre-culture conditions on the production of lovastatin in A. terreus ATCC 20542.

    METHODS: Different combinations of nitrogen sources, salts and pre-culture combinations were applied in the fermentation media and lovastatin yield was analysed chromatographically.

    RESULT: The exclusion of MnSO4 ·5H2O, CuSO4·5H2O and FeCl3·6H2O were shown to significantly improve lovastatin production (282%), while KH2PO4, MgSO4·7H2O, and NaCl and ZnSO4·7H2O were indispensable for good lovastatin production. Simple nitrogen source (ammonia) was unfavourable for morphology, growth and lovastatin production. In contrast, yeast extract (complex nitrogen source) produced the highest lovastatin yield (25.52 mg/L), while powdered soybean favoured the production of co-metabolites ((+)-geodin and sulochrin). Intermediate lactose: yeast extract (5:4) ratio produced the optimal lovastatin yield (12.33 mg/L) during pre-culture, while high (5:2) or low (5:6) lactose to yeast extract ratio produced significantly lower lovastatin yield (7.98 mg/L and 9.12 mg/L, respectively). High spore concentration, up to 107 spores/L was shown to be beneficial for lovastatin, but not for co-metabolite production, while higher spore age was shown to be beneficial for all of its metabolites.

    CONCLUSION: The findings from these investigations could be used for future cultivation of A. terreus in the production of desired metabolites.

    Matched MeSH terms: Cell Culture Techniques/methods
  17. Azad SA, Vikineswary S, Ramachandran KB, Chong VC
    Lett Appl Microbiol, 2001 Oct;33(4):264-8.
    PMID: 11559398
    AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand.

    METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth.

    CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.

    Matched MeSH terms: Cell Culture Techniques/methods*
  18. Halim NHA, Zakaria N, Satar NA, Yahaya BH
    Methods Mol Biol, 2016;1516:371-388.
    PMID: 27032945 DOI: 10.1007/7651_2016_326
    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
    Matched MeSH terms: Cell Culture Techniques/methods*
  19. Aung SW, Abu Kasim NH, Ramasamy TS
    Methods Mol Biol, 2019;2045:323-335.
    PMID: 31201682 DOI: 10.1007/7651_2019_242
    The therapeutic potential of human mesenchymal stromal stem cells (hMSCs) for cell-based therapeutic is greatly influenced by the in vitro culture condition including the culture conditions. Nevertheless, there are many technical challenges needed to be overcome prior to the clinical use including the quantity, quality, and heterogeneity of the cells. Therefore, it is necessary to develop a stem cell culture procedure or protocol for cell expansion in order to generate reproducible and high-quality cells in accordance with good manufacturing practice for clinical and therapeutic purposes. Here we assessed the MSCs characteristic of human Wharton's jelly mesenchymal stromal cells in in vitro culture according to the criteria established by the International Society for Cellular Therapy. Besides, the viability of the WJMSCs was determined in order to increase the confidence that the cells are employed to meet the therapeutic efficacy.
    Matched MeSH terms: Cell Culture Techniques/methods*
  20. Gnanasegaran N, Thimiri Govinda Raj DB, Arumugam S
    Methods Mol Biol, 2020;2125:193-196.
    PMID: 31489601 DOI: 10.1007/7651_2019_261
    Several research groups have utilized dental pulp stem cells for numerous studies as treatment modality for Parkinson's disease (PD). However, the roles of dental pulp stem cells in governing the Parkinson's disease inflammatory microenvironment remain to be evaluated. In this article, we elaborate the method where we can investigate the effects of dental pulp stem cells on neurons and microglia in an in vitro inflammatory microenvironment.
    Matched MeSH terms: Cell Culture Techniques/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links