Displaying publications 21 - 40 of 679 in total

Abstract:
Sort:
  1. Rajah T, Chow SC
    Toxicol Appl Pharmacol, 2014 Jul 15;278(2):100-6.
    PMID: 24768707 DOI: 10.1016/j.taap.2014.04.014
    The caspase inhibitor benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and l-cysteine, whereas d-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: Cells, Cultured
  2. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Tumor Cells, Cultured
  3. Chan KM, Rajab NF, Siegel D, Din LB, Ross D, Inayat-Hussain SH
    Toxicol. Sci., 2010 Aug;116(2):533-48.
    PMID: 20498002 DOI: 10.1093/toxsci/kfq151
    Goniothalamin (GN), a styryl-lactone isolated from Goniothalamus andersonii, has been demonstrated to possess antirestenostic properties by inducing apoptosis on coronary artery smooth muscle cells (CASMCs). In this study, the molecular mechanisms of GN-induced CASMCs apoptosis were further elucidated. Apoptosis assessment based on the externalization of phosphatidylserine demonstrated that GN induces CASMCs apoptosis in a concentration-dependent manner. The GN-induced DNA damage occurred with concomitant elevation of p53 as early as 2 h, demonstrating an upstream signal for apoptosis. However, the p53 elevation in GN-treated CASMCs was independent of NAD(P)H: quinone oxidoreductase 1 and Mdm-2 expression. An increase in hydrogen peroxide and reduction in free thiols confirmed the role for oxidative stress in GN treatment. Pretreatment with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (z-VAD-FMK) that significantly abrogated GN-induced CASMCs apoptosis suggested the involvement of caspase(s). The role of apical caspase-2, -8, and -9 was then investigated, and sequential activation of caspase-2 and -9 but not caspase-8 leading to downstream caspase-3 cleavage was observed in GN-treated CASMCs. Reduction of ATP level and decrease in oxygen consumption further confirmed the role of mitochondria in GN-induced apoptosis in CASMCs. The mitochondrial release of cytochrome c was seen without mitochondrial membrane potential loss and was independent of cardiolipin. These data provide insight into the mechanisms of GN-induced apoptosis, which may have important implications in the development of drug-eluting stents.
    Matched MeSH terms: Cells, Cultured
  4. Hasmad H, Yusof MR, Mohd Razi ZR, Hj Idrus RB, Chowdhury SR
    Tissue Eng Part C Methods, 2018 06;24(6):368-378.
    PMID: 29690856 DOI: 10.1089/ten.TEC.2017.0447
    Fabrication of composite scaffolds is one of the strategies proposed to enhance the functionality of tissue-engineered scaffolds for improved tissue regeneration. By combining multiple elements together, unique biomimetic scaffolds with desirable physical and mechanical properties can be tailored for tissue-specific applications. Despite having a highly porous structure, the utility of electrospun fibers (EF) as scaffold is usually hampered by their insufficient mechanical strength. In this study, we attempted to produce a mechanically competent scaffold with cell-guiding ability by fabricating aligned poly lactic-co-glycolic acid (PLGA) fibers on decellularized human amniotic membrane (HAM), known to possess favorable tensile and wound healing properties. Decellularization of HAM in 18.75 μg/mL of thermolysin followed by a brief treatment in 0.25 M sodium hydroxide efficiently removed the amniotic epithelium and preserved the ultrastructure of the underlying extracellular matrix. The electrospinning of 20% (w/v) PLGA 50:50 polymer on HAM yielded beadless fibers with straight morphology. Subsequent physical characterization revealed that EF-HAM scaffold with a 3-min fabrication had the most aligned fibers with the lowest fiber diameter in comparison with EF-HAM 5- and 7-min scaffolds. Hydrated EF-HAM scaffolds with 3-min deposition had a greater tensile strength than the other scaffolds despite having thinner fibers. Nevertheless, wet HAM and EF-HAMs regardless of the fiber thicknesses had a significantly lower Young's modulus, and hence, a higher elasticity compared with dry HAM and EF-HAMs. Biocompatibility analysis showed that the viability and migration rate of skeletal muscle cells on EF-HAMs were similar to control and HAM alone. Skeletal muscle cells seeded on HAM were shown to display random orientation, whereas cells on EF-HAM scaffolds were oriented along the alignment of the electrospun PLGA fibers. In summary, besides having good mechanical strength and elasticity, EF-HAM scaffold design decorated with aligned fiber topography holds a promising potential for use in the development of aligned tissue constructs.
    Matched MeSH terms: Cells, Cultured
  5. Wee AS, Lim CK, Tan SL, Ahmad TS, Kamarul T
    Tissue Eng Part C Methods, 2022 10;28(10):501-510.
    PMID: 36082992 DOI: 10.1089/ten.TEC.2022.0112
    Transforming growth factor-beta 1 (TGF-β1) has been reported to promote chondrogenic differentiation and proliferation in the multipotent stromal cell (MSCs), and the transforming growth factor-beta 3 (TGF-β3) tends to be exclusively in promoting cell differentiation alone. The objective of this study was to determine the effect of TGF-β1 and -β3 on the MSCs chondrogenic differentiation on the poly (vinyl alcohol)-chitosan-poly (ethylene glycol) (PVA-NOCC-PEG) scaffold, compared with that of monolayer and pellet cultures. In this study, P2 rabbit bone marrow-derived MSCs were seeded either on the untreated six-well plate (for monolayer culture) or onto the PVA-NOCC-PEG scaffold or cultured as a pellet culture. The cultures were maintained in a chemically defined serum-free medium supplemented with 10 ng/mL of either TGF-β1 or TGF-β3. Cell viability assay, biochemical assay, and real-time polymerase chain reaction were performed to determine the net effect of cell proliferation and chondrogenic differentiation of each of the growth factors. The results showed that the PVA-NOCC-PEG scaffold enhanced MSCs cell proliferation from day 12 to 30 (p  0.05). In terms of chondrogenic differentiation, the PVA-NOCC-PEG scaffold augmented the GAGs secretion in MSCs and the mRNA expression levels of Sox9, Col2a1, Acan, and Comp were elevated (p  0.05). In conclusion, TGF-β1 and TGF-β3 enhanced the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold; however, there was no significant difference between the effect of TGF-β1 and TGF-β3. Impact statement Transforming growth factor-beta (TGF-β) superfamily members is a key requirement for the in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs). In this study, the effects of TGF-β1 and -β3 on MSC chondrogenic differentiation and proliferation on a novel three-dimensional scaffold, the poly(vinyl alcohol)-chitosan-poly(ethylene glycol) (PVA-NOCC-PEG) scaffold, was evaluated. In this study, the results showed both TGF-β1 and TGF-β3 can enhance the chondrogenic differentiation of MSCs seeded on the PVA-NOCC-PEG scaffold.
    Matched MeSH terms: Cells, Cultured
  6. Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, et al.
    Tissue Eng Part A, 2009 Oct;15(10):3013-24.
    PMID: 19331580 DOI: 10.1089/ten.TEA.2008.0355
    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study.
    Matched MeSH terms: Cells, Cultured
  7. Md Nazir N, Zulkifly AH, Khalid KA, Zainol I, Zamli Z, Sha'ban M
    Tissue Eng Regen Med, 2019 06;16(3):285-299.
    PMID: 31205857 DOI: 10.1007/s13770-019-00191-1
    Background: This study aimed to observe the cartilaginous matrix production in SRY (sex determining region Y)-box 9 (SOX9)- and/or telomerase reverse transcriptase (TERT)-transfected chondrocytes from monolayer to three-dimensional (3D) culture.

    Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.

    Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.

    Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.

    Matched MeSH terms: Cells, Cultured
  8. Mat Afandi MA, Maarof M, Chowdhury SR, Bt Hj Idrus R
    Tissue Eng Regen Med, 2020 12;17(6):835-845.
    PMID: 32767029 DOI: 10.1007/s13770-020-00283-3
    BACKGROUND: One of the long-standing problems of myoblasts in vitro expansion is slow cell migration and this causes fibroblast population to exceed myoblasts. In this study, we investigated the synergistic effect of laminin and epidermal growth factor (EGF) on co-cultured myoblasts and fibroblasts for cell attachment, proliferation and migration.

    METHODS: Skeletal human muscle cells were cultured in four different conditions; control, EGF, laminin (Lam) and laminin EGF (Lam + EGF). Using live imaging system, their cellular properties; attachment, migration and growth were exposed to Rho kinase inhibitor, Y-27632, and EGF-receptor (EGF-R) inhibitor, gefitinib were measured.

    RESULTS: Myoblast migration and proliferation was enhanced significantly by synergistic stimulation of laminin and EGF (0.61 ± 0.14 µm/min, 0.008 ± 0.001 h-1) compare to that by EGF alone (0.26 ± 0.13 µm/min, 0.004 ± 0.0009 h-1). However, no changes in proliferation and migration were observed for fibroblasts among the culture conditions. Inhibition of Rho kinase resulted in the increase of the myoblast migration on the laminin-coated surface with EGF condition (0.64 ± 0.18 µm/min). Compared to the untreated conditions, myoblasts cultured on the laminin-coated surface and EGF demonstrated elongated morphology, and average cell length increase significantly. In contrast, inhibition of EGF-R resulted in the decrease of myoblast migration on the laminin coated surface with EGF supplemented condition (0.43 ± 0.05 µm/min) in comparison to the untreated control (0.53 ± 0.05 µm/min).

    CONCLUSION: Laminin and EGF preferentially enhance the proliferation and migration of myoblasts, and Rho kinase and EGF-R play a role in this synergistic effect. These results will be beneficial for the propagation of skeletal muscle cells for clinical applications.

    Matched MeSH terms: Cells, Cultured
  9. Ude CC, Shamsul BS, Ng MH, Chen HC, Norhamdan MY, Aminuddin BS, et al.
    Tissue Cell, 2012 Jun;44(3):156-63.
    PMID: 22402173 DOI: 10.1016/j.tice.2012.02.001
    Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7±0.4 and 14.6±0.5; unlabeled samples had 13.8±0.5 and 15.4±0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0±5.8, 60.0±2.9 and 95.0±2.9%, while ADSCs had 92.0±1.2, 95.0±1.2 and 98.0±1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0±1.2% to 90.0±0.6% and ADSCs from 94.0±1.2% to 52.0±1.2% (p<0.05) after 24h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p<0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.
    Matched MeSH terms: Cells, Cultured
  10. Munirah S, Samsudin OC, Aminuddin BS, Ruszymah BH
    Tissue Cell, 2010 Oct;42(5):282-92.
    PMID: 20810142 DOI: 10.1016/j.tice.2010.07.002
    Monolayer culture expansion remains as a fundamental step to acquire sufficient number of cells for 3D constructs formation. It has been well-documented that cell expansion is however accompanied by cellular dedifferentiation. In order to promote cell growth and circumvent cellular dedifferentiation, we evaluated the effects of Transforming Growth Factor Beta-2 (TGF-β2), Insulin-like Growth Factor-I (IGF-I) and basic Fibroblast Growth Factor (bFGF) combination on articular chondrocytes culture and 'chondrocytes-fibrin' construct formation. Chondrocytes were serially cultured in: (1) F12:DMEM+10% Foetal Bovine Serum (FBS) with growth factors (FD10GFs), (2) F12:DMEM+2%FBS with the growth factors (FD2GFs) and, (3) F12:DMEM+10%FBS without growth factors (FD) as control. Cultured chondrocytes were evaluated by means of growth kinetics parameters, cell cycle analysis, quantitative phenotypic expression of collagen type II, aggrecan core protein sox-9 and collagen type I and, immunochemistry technique. Harvested chondrocytes were incorporated with plasma-derived fibrin and were polymerized to form the 3D constructs and implanted subcutaneously at the dorsum of athymic nude mice for eight (8) weeks. Resulted constructs were assigned for gross inspections and microscopic evaluation using standard histochemicals staining, immunochemistry technique and, quantitative phenotypic expression of cartilage markers to reassure cartilaginous tissue formation. Growth kinetics performance of chondrocytes cultured in three (3) types of culture media from the most to least was in the following order: FD10GFs>FD2GFs>FD. Following growth kinetics analysis, we decided to use FD10GFs and FD (control) for further evaluation and 'chondrocytes-fibrin' constructs formation. Chondrocytes cultured in FD10GFs preserved the normal diploid state (2c) with no evidence of aneuploidy, haploidy or tetraploidy. Expression of cartilage-specific markers namely collagen type II, aggrecan core protein and sox-9 were significantly higher in FD10GFs when compared to control. After implantation, 'chondrocytes-fibrin' constructs exhibited firm, white, smooth and glistening cartilage-like properties. FD10GFs constructs formed better quality cartilage-like tissue than FD constructs in term of overall cartilaginous tissue formation, cells organization and extracellular matrix distribution in the specimens. Cartilaginous tissue formation was confirmed by the presence of lacunae and cartilage-isolated cells embedded within basophilic ground substance. Presence of proteoglycan was confirmed by positive Safranin O staining. Collagen type II exhibited immunopositivity at the pericellular and inter-territorial matrix area. Chondrogenic properties of the construct were further confirmed by the expression of genes encoding collagen type II, aggrecan core protein and sox9. In conclusion, FD10GFs promotes the proliferation of chondrocytes and formation of good quality 'chondrocytes-fibrin' constructs which may have potential use of matrix-induced cell implantation.
    Matched MeSH terms: Cells, Cultured
  11. Maisner A, Neufeld J, Weingartl H
    Thromb. Haemost., 2009 Dec;102(6):1014-23.
    PMID: 19967130 DOI: 10.1160/TH09-05-0310
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.
    Matched MeSH terms: Cells, Cultured
  12. Shani S, Ahmad RE, Naveen SV, Murali MR, Puvanan K, Abbas AA, et al.
    ScientificWorldJournal, 2014;2014:845293.
    PMID: 25436230 DOI: 10.1155/2014/845293
    Platelet rich concentrate (PRC) is a natural adjuvant that aids in human mesenchymal stromal cell (hMSC) proliferation in vitro; however, its role requires further exploration. This study was conducted to determine the optimal concentration of PRC required for achieving the maximal proliferation, and the need for activating the platelets to achieve this effect, and if PRC could independently induce early differentiation of hMSC. The gene expression of markers for osteocytes (ALP, RUNX2), chondrocytes (SOX9, COL2A1), and adipocytes (PPAR-γ) was determined at each time point in hMSC treated with 15% activated and nonactivated PRC since maximal proliferative effect was achieved at this concentration. The isolated PRC had approximately fourfold higher platelet count than whole blood. There was no significant difference in hMSC proliferation between the activated and nonactivated PRC. Only RUNX2 and SOX9 genes were upregulated throughout the 8 days. However, protein expression study showed formation of oil globules from day 4, significant increase in ALP at days 6 and 8 (P ≤ 0.05), and increased glycosaminoglycan levels at all time points (P < 0.05), suggesting the early differentiation of hMSC into osteogenic and adipogenic lineages. This study demonstrates that the use of PRC increased hMSC proliferation and induced early differentiation of hMSC into multiple mesenchymal lineages, without preactivation or addition of differentiation medium.
    Matched MeSH terms: Cells, Cultured
  13. Kuppusamy UR, Arumugam B, Azaman N, Jen Wai C
    ScientificWorldJournal, 2014;2014:737263.
    PMID: 25180205 DOI: 10.1155/2014/737263
    Leucaena leucocephala had been traditionally used to treat diabetes. The present study was designed to evaluate in vitro "insulin-like" activities of Leucaena leucocephala (Lam.) deWit. aqueous fruit extract on lipid and glucose metabolisms. The ability of the extract to stimulate adipogenesis, inhibit lipolysis, and activate radio-labeled glucose uptake was assessed using primary rat adipocytes. Quantitative Real-Time RT-PCR was performed to investigate effects of the extract on expression levels of genes (protein kinases B, AKT; glucose transporter 4, GLUT4; hormone sensitive lipase, HSL; phosphatidylinositol-3-kinases, PI3KA; sterol regulatory element binding factor 1, Srebp1) involved in insulin-induced signaling pathways. L. leucocephala aqueous fruit extract stimulated moderate adipogenesis and glucose uptake into adipocytes when compared to insulin. Generally, the extract exerted a considerable level of lipolytic effect at lower concentration but decreased gradually at higher concentration. The findings concurred with RT-PCR analysis. The expressions of GLUT4 and HSL genes were upregulated by twofold and onefold, respectively, whereas AKT, PI3KA, and Srebp1 genes were downregulated. The L. leucocephala aqueous fruit extract may be potentially used as an adjuvant in the treatment of Type 2 diabetes mellitus and weight management due to its enhanced glucose uptake and balanced adipogenesis and lipolysis properties.
    Matched MeSH terms: Cells, Cultured
  14. Ibrahim AM, Kayat FB, Hussin ZE, Susanto D, Ariffulah M
    ScientificWorldJournal, 2014;2014:284342.
    PMID: 24757416 DOI: 10.1155/2014/284342
    Kenaf (Hibiscus cannabinus L.) is one of the important species of Hibiscus cultivated for fiber. Availability of homozygous parent lines is prerequisite to the use of the heterosis effect reproducible in hybrid breeding. The production of haploid plants by anther culture followed by chromosome doubling can be achieved in short period compared with inbred lines by conventional method that requires self pollination of parent material. In this research, the effects of the microspore developmental stage, time of flower collection, various pretreatments, different combinations of hormones, and culture condition on anther culture of KB6 variety of Kenaf were studied. Young flower buds with immature anthers at the appropriate stage of microspore development were sterilized and the anthers were carefully dissected from the flower buds and subjected to various pretreatments and different combinations of hormones like NAA, 2,4-D, Kinetin, BAP, and TDZ to induce callus. The best microspore development stage of the flower buds was about 6-8 mm long collected 1-2 weeks after flower initiation. At that stage, the microspores were at the uninucleate stage which was suitable for culture. The best callus induction frequency was 90% in the optimized semisolid MS medium fortified with 3.0 mg/L BAP + 3.0 mg/L NAA.
    Matched MeSH terms: Cells, Cultured
  15. Yaacob JS, Taha RM, Khorasani Esmaeili A
    ScientificWorldJournal, 2013;2013:686752.
    PMID: 23766703 DOI: 10.1155/2013/686752
    The present study deals with the cytological investigations on the meristematic root cells of carnation (Dianthus caryophyllus Linn.) grown in vivo and in vitro. Cellular parameters including the mitotic index (MI), chromosome count, ploidy level (nuclear DNA content), mean cell and nuclear areas, and cell doubling time (Cdt) were determined from the 2 mm root tip segments of this species. The MI value decreased when cells were transferred from in vivo to in vitro conditions, perhaps due to early adaptations of the cells to the in vitro environment. The mean chromosome number was generally stable (2n = 2x = 30) throughout the 6-month culture period, indicating no occurrence of early somaclonal variation. Following the transfer to the in vitro environment, a significant increase was recorded for mean cell and nuclear areas, from 26.59 ± 0.09  μm² to 35.66 ± 0.10  μm² and 142.90 ± 0.59  μm² to 165.05 ± 0.58  μm², respectively. However, the mean cell and nuclear areas of in vitro grown D. caryophyllus were unstable and fluctuated throughout the tissue culture period, possibly due to organogenesis or rhizogenesis. Ploidy level analysis revealed that D. caryophyllus root cells contained high percentage of polyploid cells when grown in vivo and maintained high throughout the 6-month culture period.
    Matched MeSH terms: Cells, Cultured
  16. Ab Kadir R, Zainal Ariffin SH, Megat Abdul Wahab R, Kermani S, Senafi S
    ScientificWorldJournal, 2012;2012:843843.
    PMID: 22666162 DOI: 10.1100/2012/843843
    Unspecialized cells that can renew themselves and give rise to multiple differentiated cell types are termed stem cells. The objective of this study was to characterize and investigate, through molecular and biochemical analyses, the stemness of cells derived from isolated mononucleated cells that originated from peripheral blood. The isolated mononucleated cells were separated according to their physical characteristics (adherent and suspension), after 4 to 7 days into a 14-day culturing period in complete medium. Our results revealed that adherent and suspension cells were positive for mesenchymal stem cell (MSC) and hematopoietic stem cell (HSC) markers, respectively. Differentiation of adherent cells into osteoblasts was associated with expression of the OPN gene and increasing ALP enzyme activity, while differentiation of suspension cells into osteoclasts was associated with expression of the TRAP gene and increasing TRAP enzyme activity. In conclusion, molecular and biochemical analyses showed that mononucleated cells consist of MSC (adherent) and HSC (suspension), and both cell types are able to differentiate into specialized cells from their respective lineage: osteoblast (MSC) and osteoclast (HSC).
    Matched MeSH terms: Cells, Cultured
  17. Subhan RA, Puvanan K, Murali MR, Raghavendran HR, Shani S, Abdullah BJ, et al.
    ScientificWorldJournal, 2014;2014:818502.
    PMID: 24983002 DOI: 10.1155/2014/818502
    This study was conducted to develop a technique for minimally invasive and accurate delivery of stem cells to augment nucleus pulposus (NP) in damaged intervertebral discs (IVD). IVD damage was created in noncontiguous discs at L4-L5 level; rabbits (N = 12) were randomly divided into three groups: group I treated with MSCs in HyStem hydrogel, group II treated with HyStem alone, and group III received no intervention. MSCs and hydrogel were administered to the damaged disc under guidance of fluoroscopy. Augmentation of NP was assessed through histological and MRI T2 mapping of the NP after eight weeks of transplantation. T2 weighted signal intensity was higher in group I than in groups II and III (P < 0.05). Disc height index showed maximum disc height in group I compared to groups II and III. Histological score of the degenerative index was significantly (P < 0.05) lower in group I (8.6 ± 1.8) than that in groups II (11.6 ± 2.3) and III (18.0 ± 5.7). Immunohistochemistry staining for collagen type II and aggrecan staining were higher in group I as compared to other groups. Our results demonstrate that the minimally invasive administration of MSCs in hyaluronan hydrogel (HyStem) augments the repair of NP in damaged IVD.
    Matched MeSH terms: Cells, Cultured
  18. Muniandy S, Qvist R, Yan GO, Bee CJ, Chu YK, Rayappan AV
    J. Med. Invest., 2009 Feb;56(1-2):6-10.
    PMID: 19262007
    Hyperglycemia and insulin resistance are common in many critically ill patients. Hyperglycemia increases the production of reactive oxygen species in cells, stimulates the production of the potent proinflammatory cytokines IL-8 and TNF-alpha, and enhances the expression of haem oxygenase-1, an inducible stress protein. It has been shown that administration of insulin and the semi-essential amino acid glutamine have been beneficial to the septic patient. The aim of our study is to test whether these two molecules, glutamine and insulin used in combination attenuate the proinflammatory responses in endothelial cells which have been triggered by hyperglycaemia. Our results demonstrate that a combination of insulin and glutamine are significantly more effective in reducing the expression of IL-8, TNF-alpha and HO-1 than insulin or glutamine alone.
    Matched MeSH terms: Cells, Cultured
  19. Ubaidah MA, Chua KH, Ami M, Zainal A, Saim A, Saim L, et al.
    J Int Adv Otol, 2015 Apr;11(1):23-9.
    PMID: 26223713 DOI: 10.5152/iao.2015.539
    Loss of auditory hair cells is a major cause of deafness. The presence of auditory progenitor cells in the inner ear raises the hope for mammalian inner ear cell regeneration. In this study, we aimed to investigate the effect of growth factor supplementations, namely a combination of epidermal growth factor (EGF), insulin-like growth factor (IGF), and beta (β)-fibroblast growth factor (βFGF), on the expression of hair cell-specific markers by cells harvested from the cochlear membrane. This would provide an insight into the capability of these cells to differentiate into hair cells.
    Matched MeSH terms: Cells, Cultured
  20. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
    Matched MeSH terms: Tumor Cells, Cultured
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links