Displaying publications 21 - 29 of 29 in total

Abstract:
Sort:
  1. Ismail M, Mariod A, Pin SS
    Acta Sci Pol Technol Aliment, 2013 Jan-Mar;12(1):21-31.
    PMID: 24584862
    BACKGROUND:
    The effect of preparation methods (raw, half-boiled and hard-boiled) on protein and amino acid contents, as well as the protein quality (amino acid score) of regular, kampung and nutrient enriched Malaysian eggs was investigated.
    METHODS:
    The protein content was determined using a semi-micro Kjeldahl method whereas the amino acid composition was determined using HPLC.
    RESULTS:
    The protein content of raw regular, kampung and nutrient enriched eggs were 49.9 ±0.2%, 55.8 ±0.2% and 56.5 ±0.5%, respectively. The protein content of hard-boiled eggs of regular, kampung and nutrient enriched eggs was 56.8 ±0.1%, 54.7 ±0.1%, and 53.7 ±0.5%, while that for half-boiled eggs of regular, kampung and nutrient enriched eggs was 54.7 ±0.6%, 53.4 ±0.4%, and 55.1 ±0.7%, respectively. There were significant differences (p < 0.05) in protein and amino acid contents of half-boiled, hard-boiled as compared with raw samples, and valine was found as the limiting amino acid. It was found that there were significant differences (p < 0.05) of total amino score in regular, kampung and nutrient enriched eggs after heat treatments.Furthermore, hard-boiling (100°C) for 10 minutes and half-boiling (100°C) for 5 minutes affects the total amino score, which in turn alter the protein quality of the egg.
    Matched MeSH terms: Cooking/methods*
  2. Ismail I, Hwang YH, Joo ST
    Meat Sci, 2019 Nov;157:107882.
    PMID: 31295690 DOI: 10.1016/j.meatsci.2019.107882
    This paper describes the influence of different factors on toughness of beef semitendinosus (ST) by means of low temperature-long time cooking with single-stage (60 °C, 65 °C, 70 °C, and 75 °C for 6 h and 12 h) and two-stage sous-vide procedure (45 + 60 °C, 45 + 65 °C, 45 + 70 °C, and 45 + 75 °C; 49 + 60 °C, 49 + 65 °C, 49 + 70 °C, and 49 + 75 °C for 3 h at the first temperature, and either 3 or 9 h at the second temperature). Reduced toughness of ST beef steak muscle could be attained in 6 h at 60 °C and 45 + 60 °C were due from the minimum shrinkage of sarcomere as well as lower perimysial thickness, cooking loss, and elastic modulus. Collagen solubility showed a positive correlation to the toughness values. The relationship between proteolytic activity and shear force can be seen after 12 h of cooking duration. For the other quality attributes, two stepped cooking temperature-time combination seems to be more effective in preserving the redness values and water content than a single-stage sous-vide method.
    Matched MeSH terms: Cooking/methods*
  3. Ibrahim NUA, Abd Aziz S, Hashim N, Jamaludin D, Khaled AY
    J Food Sci, 2019 Apr;84(4):792-797.
    PMID: 30861127 DOI: 10.1111/1750-3841.14436
    Total polar compounds (TPC) and free fatty acids (FFA) are important indicators in evaluating the quality of frying oil. Conventional methods to determine TPC and FFA are often time consuming, involved laboratory analyses which required skilled personnel and used substantial amount of harmful solvent. In this study, dielectric spectroscopy technique was used to investigate the relation between dielectric property of refined, bleached and deodorized palm olein (RBDPO) during deep frying with TPC and FFA. In total, 150 batches of French fries were intermittently fried at 185 ± 5 °C for 7 hr a day over 5 consecutive days. A total of 30 frying oil samples were collected. The dielectric property of frying oil samples were measured using impedance analyzer with frequencies ranging from 100 Hz to 10 MHz. The TPC of frying oil samples were measured with a Testo 270, while the FFA analysis was done using Malaysian Palm Oil Board (MPOB) test method. Results showed that dielectric constant, TPC and FFA of RBDPO increased as the frying time increased. Dielectric constant increased from 3.09 to 3.17, while TPC and FFA increased from 9.96 to 19.52 and from 0.08% to 0.36%, respectively. Partial least square (PLS) analysis produced good prediction of TPC and FFA with the application of genetic algorithm (GA). Model developed for prediction of TPC and FFA yielded highly significant correlation with R2 of 0.91 and 0.95, respectively and both had root mean square error in cross-validation (RMSECV) of 1.06%. This study demonstrates the potential of dielectric spectroscopy in monitoring palm olein degradation during frying. PRACTICAL APPLICATION: The application of dielectric spectroscopy to detect degradation of palm olein during frying was studied. The dielectric property of palm olein during frying has successfully correlated with TPC and FFA. The model developed in this study could be used for the development of a sensing system for palm olein degradation monitoring.
    Matched MeSH terms: Cooking/methods*
  4. Hossain MA, Ali ME, Hamid SB, Hossain SM, Asing, Nizar NN, et al.
    Food Chem, 2017 Jun 01;224:97-104.
    PMID: 28159299 DOI: 10.1016/j.foodchem.2016.12.062
    Replacement of beef by buffalo and vice versa is frequent in global markets, but their authentication is challenging in processed foods due to the fragmentation of most biomarkers including DNA. The shortening of target sequences through use of two target sites might ameliorate assay reliability because it is highly unlikely that both targets will be lost during food processing. For the first time, we report a tetraplex polymerase chain reaction (PCR) assay targeting two different DNA regions in beef (106 and 120-bp) and buffalo (90 and 138-bp) mitochondrial genes to discriminate beef and buffalo in processed foods. All targets were stable under boiling, autoclaving and microwave cooking conditions. A survey in Malaysian markets revealed 71% beef curries contained buffalo but there was no buffalo in beef burgers. The assay detected down to 0.01ng DNA and 1% meat in admixed and burger products.
    Matched MeSH terms: Cooking/methods*
  5. Daniali G, Jinap S, Hajeb P, Sanny M, Tan CP
    Food Chem, 2016 Dec 01;212:244-9.
    PMID: 27374529 DOI: 10.1016/j.foodchem.2016.05.174
    The method of liquid chromatographic tandem mass spectrometry was utilized and modified to confirm and quantify acrylamide in heating cooking oil and animal fat. Heating asparagine with various cooking oils and animal fat at 180°C produced varying amounts of acrylamide. The acrylamide in the different cooking oils and animal fat using a constant amount of asparagine was measured. Cooking oils were also examined for peroxide, anisidine and iodine values (or oxidation values). A direct correlation was observed between oxidation values and acrylamide formation in different cooking oils. Significantly less acrylamide was produced in saturated animal fat than in unsaturated cooking oil, with 366ng/g in lard and 211ng/g in ghee versus 2447ng/g in soy oil, followed by palm olein with 1442ng/g.
    Matched MeSH terms: Cooking/methods*
  6. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Cooking/methods*
  7. Chai LC, Lee HY, Ghazali FM, Abu Bakar F, Malakar PK, Nishibuchi M, et al.
    J Food Prot, 2008 Dec;71(12):2448-52.
    PMID: 19244897
    Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.
    Matched MeSH terms: Cooking/methods*
  8. Asghar MT, Yusof YA, Mokhtar MN, Yaacob ME, Ghazali HM, Varith J, et al.
    J Sci Food Agric, 2020 Aug;100(10):4012-4019.
    PMID: 32337729 DOI: 10.1002/jsfa.10446
    BACKGROUND: Coconut sugar has a caramel color with a taste like brown sugar. It is commonly used as natural sweetener. However, coconut sugar has been produced from coconut sap using a traditional method that involves heating the sap at high temperature (>100 °C) in an open pan for a long period (3-5 h). This conventional method results in an over-cooked sugar, which leads to quality deterioration in terms of both its physical and chemical properties. The current study aimed to investigate the processing of coconut sap into sugar syrup using alternative processing techniques such as rotary vacuum evaporation (RE) and microwave evaporation (ME), comparing them with open-heat evaporation (OHE) technique.

    RESULTS: Coconut sugar syrup produced by rotary evaporation at 60 °C and 250 mbar vacuum (RE-60) required the shortest production time (12.2 min) and the lowest processing temperature (54.8 °C) when compared with ME (13 min and 103.2 °C) and OHE (46.8 min and 101.6 °C). It also had a light brownish color with a higher L* value (35.17) than the ME (29.84) and OHE (23.84) methods. It was found to contain higher amounts of monosaccharides (fructose and glucose) and lower amounts of disaccharides (sucrose). Furthermore, the amount of energy required for RE-60 (0.35 kWh) was much less than for OHE (0.83 kWh).

    CONCLUSION: This study provided an alternative processing method for the sugar processing industry to produce coconut sugar using the rotary evaporation method at 60 °C under 250 mbar vacuum with better physicochemical qualities, shorter processing time, and minimum input energy. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Cooking/methods*
  9. Ali MA, Nouruddeen ZB, Muhamad II, Latip RA, Othman NH
    Acta Sci Pol Technol Aliment, 2013 Jul-Sep;12(3):241-52.
    PMID: 24584953
    Microwave heating is one of the most attractive cooking methods for food preparation, commonly employed in households and especially in restaurants for its high speed and convenience. The chemical constituents of oils that degrade during microwave heating do so at rates that vary with heating temperature and time in a similar manner to other type of processing methods. The rate of quality characteristics of the oil depends on the fatty acid composition and the minor components during heating. Addition of oxidative-stable palm olein (PO) to heat sensitive canola oil (CO), may affect the quality characteristics of CO during microwave heating. The aim of this study was to evaluate how heat treatments by microwave oven affect the quality of CO in presence of PO.
    Matched MeSH terms: Cooking/methods
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links