Displaying publications 21 - 40 of 373 in total

Abstract:
Sort:
  1. Crawford R
    Matched MeSH terms: Culicidae
  2. Seo BS
    Kisaengchunghak Chapchi, 1974 Dec;12(2):95-100.
    PMID: 12913470
    The periodicity of the microfilariae of Brugia malayi was studied in 9 human carriers from Shin-san Ri, Seong-san Myon, Cheju Island. The periodicity pattern was markedly nocturnal and the peaks were observed between 21:30 p.m. and 5:30 a.m. The average peak count was 1:30 a.m. and the percentage of peak count at this time was 95.3. The ratio of minimum of the average peak count percentage to the maximum was 8.3. The periodicity pattern of B.malayi in Cheju Island was compared with that in Inland and no differences were found between two forms. From the above observations, it was concluded that the periodicity of B. malayi in Korea is markedly nocturnal and closely resembles that in the strain of Penang, Malaya.
    Matched MeSH terms: Culicidae
  3. Yu KX, Jantan I, Ahmad R, Wong CL
    Parasitol Res, 2014 Sep;113(9):3121-41.
    PMID: 25115733 DOI: 10.1007/s00436-014-4068-5
    Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
    Matched MeSH terms: Culicidae/drug effects*
  4. Cheong WH, Ben Omar AH, Warren M
    Med J Malaya, 1966 Jun;20(4):327-9.
    PMID: 4380826
    Matched MeSH terms: Culicidae*
  5. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P
    PLoS Negl Trop Dis, 2017 Jun;11(6):e0005701.
    PMID: 28640895 DOI: 10.1371/journal.pntd.0005701
    Dengue is a fast spreading mosquito-borne disease that affects more than half of the population worldwide. An unprecedented outbreak happened in Guangzhou, China in 2014, which contributed 52 percent of all dengue cases that occurred in mainland China between 1990 and 2015. Our previous analysis, based on a deterministic model, concluded that the early timing of the first imported case that triggered local transmission and the excessive rainfall thereafter were the most important determinants of the large final epidemic size in 2014. However, the deterministic model did not allow us to explore the driving force of the early local transmission. Here, we expand the model to include stochastic elements and calculate the successful invasion rate of cases that entered Guangzhou at different times under different climate and intervention scenarios. The conclusion is that the higher number of imported cases in May and June was responsible for the early outbreak instead of climate. Although the excessive rainfall in 2014 did increase the success rate, this effect was offset by the low initial water level caused by interventions in late 2013. The success rate is strongly dependent on mosquito abundance during the recovery period of the imported case, since the first step of a successful invasion is infecting at least one local mosquito. The average final epidemic size of successful invasion decreases exponentially with introduction time, which means if an imported case in early summer initiates the infection process, the final number infected can be extremely large. Therefore, dengue outbreaks occurring in Thailand, Singapore, Malaysia and Vietnam in early summer merit greater attention, since the travel volumes between Guangzhou and these countries are large. As the climate changes, destroying mosquito breeding sites in Guangzhou can mitigate the detrimental effects of the probable increase in rainfall in spring and summer.
    Matched MeSH terms: Culicidae/virology
  6. Zuharah WF, Lester PJ
    J Vector Ecol, 2010 Dec;35(2):347-53.
    PMID: 21175942 DOI: 10.1111/j.1948-7134.2010.00093.x
    The occurrence and abundance of mosquito populations may be associated with the abundance of predators. We examined the relationship between aquatic predators and populations of mosquitoes in animal water troughs in Waikanae, New Zealand. We also investigated the effects of water volume and environmental factors (temperature, rainfall, wind speed, humidity, and pressure) in order to further understand factors influencing mosquito and predator populations. Logistic regression indicated that the presence or absence of mosquitoes was primarily affected by three factors: predator abundance, week of observation, and water volume. Pearson's correlation indicated that the presence of predators had a positive correlation with water volume (r² = 0.176, p< 0.05). Otherwise, the presence of mosquito larvae in water troughs was negatively correlated with water volume (r² =-0.159, p=0.022) and wind speed (r² =0.142, p=0.041). We established a translocation experiment in which predators or mosquitoes were moved between troughs in order to examine the prey survival rate after exposure to Anisops wakefieldi predators. The survival rate of mosquitoes was not significantly different, between 0-0.1%, irrespective of the number of predators translocated (1-9) or the initial mosquito density (20-70 larvae). Our results suggested that A. wakefieldi predators may have the potential to be a promising biological control tool for the control of mosquito populations by altering mosquito population dynamics.
    Matched MeSH terms: Culicidae/growth & development*
  7. Lei W, Guo X, Fu S, Feng Y, Tao X, Gao X, et al.
    Vet Microbiol, 2017 Mar;201:32-41.
    PMID: 28284620 DOI: 10.1016/j.vetmic.2017.01.003
    BACKGROUND: Since the turn of the 21st century, there have been several epidemic outbreaks of poultry diseases caused by Tembusu virus (TMUV). Although multiple mosquito and poultry-derived strains of TMUV have been isolated, no data exist about their comparative study, origin, evolution, and dissemination.

    METHODOLOGY: Parallel virology was used to investigate the phenotypes of duck and mosquito-derived isolates of TMUV. Molecular biology and bioinformatics methods were employed to investigate the genetic characteristics and evolution of TMUV.

    PRINCIPAL FINDINGS: The plaque diameter of duck-derived isolates of TMUV was larger than that of mosquito-derived isolates. The cytopathic effect (CPE) in mammalian cells occurred more rapidly induced by duck-derived isolates than by mosquito-derived isolates. Furthermore, duck-derived isolates required less time to reach maximum titer, and exhibited higher viral titer. These findings suggested that poultry-derived TMUV isolates were more invasive and had greater expansion capability than the mosquito-derived isolates in mammalian cells. Variations in amino acid loci in TMUV E gene sequence revealed two mutated amino acid loci in strains isolated from Malaysia, Thailand, and Chinese mainland compared with the prototypical strain of the virus (MM1775). Furthermore, TMUV isolates from the Chinese mainland had six common variations in the E gene loci that differed from the Southeast Asian strains. Phylogenetic analysis indicated that TMUV did not exhibit a species barrier in avian species and consisted of two lineages: the Southeast Asian and the Chinese mainland lineages. Molecular traceability studies revealed that the recent common evolutionary ancestor of TMUV might have appeared before 1934 and that Malaysia, Thailand and Shandong Province of China represent the three main sources related to TMUV spread.

    CONCLUSIONS: The current broad distribution of TMUV strains in Southeast Asia and Chinese mainland exhibited longer-range diffusion and larger-scale propagation. Therefore, in addition to China, other Asian and European countries linked to Asia have used improved measures to detect and monitor TMUV related diseases to prevent epidemics in poultry.

    Matched MeSH terms: Culicidae/virology*
  8. Zahedi M
    Trop. Med. Parasitol., 1994 Mar;45(1):33-5.
    PMID: 7915044
    In Armigeres subalbatus, 60% and 3% of the ingested Brugia pahangi microfilariae (mf) respectively migrated into the haemocoel and the thorax within 5 minutes post ingestion (p.i.). Most of the mf had migrated from the gut into the haemocoel within the first 10 minutes p.i. There was no correlation between the number of mf ingested and the migration rate though those in mosquitoes with a low mf burden tend to migrate earlier. At 24 hours p.i., 5-30% of the mf were still in the gut; 19% of these mf were immobile. At 48 hours p.i. only 2% of the mf were mobile. B. pahangi mf isolated from blood meals at 24 hours p.i., failed to develop when inoculated into Armigeres subalbatus. 54% and 73% of the mf isolated from a 24 hour old clotted blood of a B. pahangi-infected cat and fresh peripheral cat blood respectively developed into stage-1 larva. Probably mf left in the midgut at 24 hours p.i. are the young and immature worms and are physiologically incapable of penetrating the gut.
    Matched MeSH terms: Culicidae/parasitology*
  9. Lie-Injo LE
    Med J Malaya, 1961 Dec;16:107-14.
    PMID: 14465150
    Matched MeSH terms: Culicidae*
  10. EDESON JF, WHARTON RH
    Trans R Soc Trop Med Hyg, 1958 Jan;52(1):25-38; discussion 39-45.
    PMID: 13507120
    Matched MeSH terms: Culicidae*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links