Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Jee Keen Raymond W, Illias HA, Abu Bakar AH
    PLoS One, 2017;12(1):e0170111.
    PMID: 28085953 DOI: 10.1371/journal.pone.0170111
    Cable joint insulation breakdown may cause a huge loss to power companies. Therefore, it is vital to diagnose the insulation quality to detect early signs of insulation failure. It is well known that there is a correlation between Partial discharge (PD) and the insulation quality. Although many works have been done on PD pattern recognition, it is usually performed in a noise free environment. Also, works on PD pattern recognition in actual cable joint are less likely to be found in literature. Therefore, in this work, classifications of actual cable joint defect types from partial discharge data contaminated by noise were performed. Five cross-linked polyethylene (XLPE) cable joints with artificially created defects were prepared based on the defects commonly encountered on site. Three different types of input feature were extracted from the PD pattern under artificially created noisy environment. These include statistical features, fractal features and principal component analysis (PCA) features. These input features were used to train the classifiers to classify each PD defect types. Classifications were performed using three different artificial intelligence classifiers, which include Artificial Neural Networks (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM). It was found that the classification accuracy decreases with higher noise level but PCA features used in SVM and ANN showed the strongest tolerance against noise contamination.
    Matched MeSH terms: Fractals
  2. Aliahmad B, Kumar DK, Hao H, Unnikrishnan P, Che Azemin MZ, Kawasaki R, et al.
    ScientificWorldJournal, 2014;2014:467462.
    PMID: 25485298 DOI: 10.1155/2014/467462
    Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed.
    Matched MeSH terms: Fractals*
  3. Namazi H, Kulish VV, Hussaini J, Hussaini J, Delaviz A, Delaviz F, et al.
    Oncotarget, 2016 Jan 5;7(1):342-50.
    PMID: 26586477 DOI: 10.18632/oncotarget.6341
    One of the main areas of behavioural neuroscience is forecasting the human behaviour. Epilepsy is a central nervous system disorder in which nerve cell activity in the brain becomes disrupted, causing seizures or periods of unusual behaviour, sensations and sometimes loss of consciousness. An estimated 5% of the world population has epileptic seizure but there is not any method to cure it. More than 30% of people with epilepsy cannot control seizure. Epileptic seizure prediction, refers to forecasting the occurrence of epileptic seizures, is one of the most important but challenging problems in biomedical sciences, across the world. In this research we propose a new methodology which is based on studying the EEG signals using two measures, the Hurst exponent and fractal dimension. In order to validate the proposed method, it is applied to epileptic EEG signals of patients by computing the Hurst exponent and fractal dimension, and then the results are validated versus the reference data. The results of these analyses show that we are able to forecast the onset of a seizure on average of 25.76 seconds before the time of occurrence.
    Matched MeSH terms: Fractals
  4. Namazi H, Kiminezhadmalaie M
    Comput Math Methods Med, 2015;2015:242695.
    PMID: 26539245 DOI: 10.1155/2015/242695
    Cancer starts when cells in a part of the body start to grow out of control. In fact cells become cancer cells because of DNA damage. A DNA walk of a genome represents how the frequency of each nucleotide of a pairing nucleotide couple changes locally. In this research in order to study the cancer genes, DNA walk plots of genomes of patients with lung cancer were generated using a program written in MATLAB language. The data so obtained was checked for fractal property by computing the fractal dimension using a program written in MATLAB. Also, the correlation of damaged DNA was studied using the Hurst exponent measure. We have found that the damaged DNA sequences are exhibiting higher degree of fractality and less correlation compared with normal DNA sequences. So we confirmed this method can be used for early detection of lung cancer. The method introduced in this research not only is useful for diagnosis of lung cancer but also can be applied for detection and growth analysis of different types of cancers.
    Matched MeSH terms: Fractals
  5. Namazi H, Kulish VV
    Comput Math Methods Med, 2015;2015:148534.
    PMID: 26089955 DOI: 10.1155/2015/148534
    Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.
    Matched MeSH terms: Fractals
  6. Tijani HI, Abdullah N, Yuzir A, Ujang Z
    Bioresour Technol, 2015 Jun;186:276-85.
    PMID: 25836036 DOI: 10.1016/j.biortech.2015.02.107
    The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area.
    Matched MeSH terms: Fractals
  7. Adam M, Oh SL, Sudarshan VK, Koh JE, Hagiwara Y, Tan JH, et al.
    Comput Methods Programs Biomed, 2018 Jul;161:133-143.
    PMID: 29852956 DOI: 10.1016/j.cmpb.2018.04.018
    Cardiovascular diseases (CVDs) are the leading cause of deaths worldwide. The rising mortality rate can be reduced by early detection and treatment interventions. Clinically, electrocardiogram (ECG) signal provides useful information about the cardiac abnormalities and hence employed as a diagnostic modality for the detection of various CVDs. However, subtle changes in these time series indicate a particular disease. Therefore, it may be monotonous, time-consuming and stressful to inspect these ECG beats manually. In order to overcome this limitation of manual ECG signal analysis, this paper uses a novel discrete wavelet transform (DWT) method combined with nonlinear features for automated characterization of CVDs. ECG signals of normal, and dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM) and myocardial infarction (MI) are subjected to five levels of DWT. Relative wavelet of four nonlinear features such as fuzzy entropy, sample entropy, fractal dimension and signal energy are extracted from the DWT coefficients. These features are fed to sequential forward selection (SFS) technique and then ranked using ReliefF method. Our proposed methodology achieved maximum classification accuracy (acc) of 99.27%, sensitivity (sen) of 99.74%, and specificity (spec) of 98.08% with K-nearest neighbor (kNN) classifier using 15 features ranked by the ReliefF method. Our proposed methodology can be used by clinical staff to make faster and accurate diagnosis of CVDs. Thus, the chances of survival can be significantly increased by early detection and treatment of CVDs.
    Matched MeSH terms: Fractals
  8. Raghavendra U, Rajendra Acharya U, Gudigar A, Hong Tan J, Fujita H, Hagiwara Y, et al.
    Ultrasonics, 2017 05;77:110-120.
    PMID: 28219805 DOI: 10.1016/j.ultras.2017.02.003
    Thyroid is a small gland situated at the anterior side of the neck and one of the largest glands of the endocrine system. The abrupt cell growth or malignancy in the thyroid gland may cause thyroid cancer. Ultrasound images distinctly represent benign and malignant lesions, but accuracy may be poor due to subjective interpretation. Computer Aided Diagnosis (CAD) can minimize the errors created due to subjective interpretation and assists to make fast accurate diagnosis. In this work, fusion of Spatial Gray Level Dependence Features (SGLDF) and fractal textures are used to decipher the intrinsic structure of benign and malignant thyroid lesions. These features are subjected to graph based Marginal Fisher Analysis (MFA) to reduce the number of features. The reduced features are subjected to various ranking methods and classifiers. We have achieved an average accuracy, sensitivity and specificity of 97.52%, 90.32% and 98.57% respectively using Support Vector Machine (SVM) classifier. The achieved maximum Area Under Curve (AUC) is 0.9445. Finally, Thyroid Clinical Risk Index (TCRI) a single number is developed using two MFA features to discriminate the two classes. This prototype system is ready to be tested with huge diverse database.
    Matched MeSH terms: Fractals
  9. Al-Qazzaz NK, Ali SHBM, Ahmad SA, Islam MS, Escudero J
    Med Biol Eng Comput, 2018 Jan;56(1):137-157.
    PMID: 29119540 DOI: 10.1007/s11517-017-1734-7
    Stroke survivors are more prone to developing cognitive impairment and dementia. Dementia detection is a challenge for supporting personalized healthcare. This study analyzes the electroencephalogram (EEG) background activity of 5 vascular dementia (VaD) patients, 15 stroke-related patients with mild cognitive impairment (MCI), and 15 control healthy subjects during a working memory (WM) task. The objective of this study is twofold. First, it aims to enhance the discrimination of VaD, stroke-related MCI patients, and control subjects using fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR); second, it aims to extract and investigate the spectral features that characterize the post-stroke dementia patients compared to the control subjects. Nineteen channels were recorded and analyzed using the independent component analysis and wavelet analysis (ICA-WT) denoising technique. Using ANOVA, linear spectral power including relative powers (RP) and power ratio were calculated to test whether the EEG dominant frequencies were slowed down in VaD and stroke-related MCI patients. Non-linear features including permutation entropy (PerEn) and fractal dimension (FD) were used to test the degree of irregularity and complexity, which was significantly lower in patients with VaD and stroke-related MCI than that in control subjects (ANOVA; p ˂ 0.05). This study is the first to use fuzzy neighborhood preserving analysis with QR-decomposition (FNPAQR) dimensionality reduction technique with EEG background activity of dementia patients. The impairment of post-stroke patients was detected using support vector machine (SVM) and k-nearest neighbors (kNN) classifiers. A comparative study has been performed to check the effectiveness of using FNPAQR dimensionality reduction technique with the SVM and kNN classifiers. FNPAQR with SVM and kNN obtained 91.48 and 89.63% accuracy, respectively, whereas without using the FNPAQR exhibited 70 and 67.78% accuracy for SVM and kNN, respectively, in classifying VaD, stroke-related MCI, and control patients, respectively. Therefore, EEG could be a reliable index for inspecting concise markers that are sensitive to VaD and stroke-related MCI patients compared to control healthy subjects.
    Matched MeSH terms: Fractals
  10. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: Fractals
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links