OBJECTIVE: In this research, for the first time, we investigate how facial muscle reaction is related to the reaction of the human brain.
METHODS: Since both electromyography (EMG) and electroencephalography (EEG) signals, as the features of muscle and brain activities, contain information, we benefited from the information theory and computed the Shannon entropy of EMG and EEG signals when subjects were exposed to different static visual stimuli with different Shannon entropies (information content).
RESULTS: Based on the obtained results, the variations of the information content of the EMG signal are related to the variations of the information content of the EEG signal and the visual stimuli. Statistical analysis also supported the results indicating that the visual stimuli with greater information content have a greater effect on the variation of the information content of both EEG and EMG signals.
CONCLUSION: This investigation can be further continued to analyze the relationship between facial muscle and brain reactions in case of other types of stimuli.
OBJECTIVE: This study for the first time analyzed the coupling of walking paths and brain reaction from the information point of view.
METHODS: We analyzed the Shannon entropy for electroencephalography (EEG) signals versus the walking paths in order to relate their information contents.
RESULTS: According to the results, walking on a path that contains more information causes more information in EEG signals. A strong correlation (p= 0.9999) was observed between the information contents of EEG signals and walking paths. Our method of analysis can also be used to investigate the relation among other physiological signals of a human and walking paths, which has great benefits in rehabilitation science.
METHODS: An improved Dempster-Shafer evidence theory (DST) based on Wasserstein distance and Deng entropy was proposed to reduce the conflicts among the results by combining the credibility degree between evidence and the uncertainty degree of evidence. To validate the effectiveness of the proposed method, examples were analyzed, and applied in a baby cry recognition. The Whale optimization algorithm-Variational mode decomposition (WOA-VMD) was used to optimally decompose the baby cry signals. The deep features of decomposed components were extracted using the VGG16 model. Long Short-Term Memory (LSTM) models were used to classify baby cry signals. An improved DST decision method was used to obtain the decision fusion.
RESULTS: The proposed fusion method achieves an accuracy of 90.15% in classifying three types of baby cry. Improvement between 2.90% and 4.98% was obtained over the existing DST fusion methods. Recognition accuracy was improved by between 5.79% and 11.53% when compared to the latest methods used in baby cry recognition.
CONCLUSION: The proposed method optimally decomposes baby cry signal, effectively reduces the conflict among the results of deep learning models and improves the accuracy of baby cry recognition.
RESULTS: Thus, this study presents comprehensive robustness evaluations of seven widely used pathway activity inference methods using six cancer datasets based on two assessments. The first assessment seeks to investigate the robustness of pathway activity in pathway activity inference methods, while the second assessment aims to assess the robustness of risk-active pathways and genes predicted by these methods. The mean reproducibility power and total number of identified informative pathways and genes were evaluated. Based on the first assessment, the mean reproducibility power of pathway activity inference methods generally decreased as the number of pathway selections increased. Entropy-based Directed Random Walk (e-DRW) distinctly outperformed other methods in exhibiting the greatest reproducibility power across all cancer datasets. On the other hand, the second assessment shows that no methods provide satisfactory results across datasets.
CONCLUSION: However, PTB methods generally appear to perform better in producing greater reproducibility power and identifying potential cancer markers compared to non-TB methods.
METHODS: A literature search was conducted with the use of three online databases namely, Web of Science, Scopus, and ScienceDirect. Developed keywords strategy was used to include only the relevant articles. A Population Intervention Comparison Outcomes (PICO) strategy was used to develop the inclusion and exclusion criteria. Image quality was analyzed quantitatively based on peak signal-noise-ratio (PSNR), Mean Squared Error (MSE), Absolute Mean Brightness Error (AMBE), Entropy, and Contrast Improvement Index (CII) values.
RESULTS: Nine studies with four types of image enhancement techniques were included in this study. Two studies used histogram-based, three studies used frequency-based, one study used fuzzy-based and three studies used filter-based. All studies reported PSNR values whilst only four studies reported MSE, AMBE, Entropy and CII values. Filter-based was the highest PSNR values of 78.93, among other types. For MSE, AMBE, Entropy, and CII values, the highest were frequency-based (7.79), fuzzy-based (93.76), filter-based (7.92), and frequency-based (6.54) respectively.
CONCLUSION: In summary, image quality for each image enhancement technique is varied, especially for breast cancer detection. In this study, the frequency-based of Fast Discrete Curvelet Transform (FDCT) via the UnequiSpaced Fast Fourier Transform (USFFT) shows the most superior among other image enhancement techniques.