Displaying publications 21 - 26 of 26 in total

Abstract:
Sort:
  1. Yee LN, Chuah JA, Chong ML, Phang LY, Raha AR, Sudesh K, et al.
    Microbiol Res, 2012 Oct 12;167(9):550-7.
    PMID: 22281521 DOI: 10.1016/j.micres.2011.12.006
    In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
    Matched MeSH terms: Hydroxybutyrates/metabolism
  2. Omidvar V, Siti Nor Akmar A, Marziah M, Maheran AA
    Plant Cell Rep, 2008 Sep;27(9):1451-9.
    PMID: 18563415 DOI: 10.1007/s00299-008-0565-2
    The promoter of the oil palm metallothionein-like gene (MT3-A) demonstrated mesocarp-specific activity in functional analysis using transient expression assay of reporter gene in bombarded oil palm tissue slices. In order to investigate the tissue-specific expression of polyhydroxybutyrate (PHB) biosynthetic pathway genes, a multi-gene construct carrying PHB genes fused to the oil palm MT3-A promoter was co-transferred with a construct carrying GFP reporter gene using microprojectile bombardment targeting the mesocarp and leaf tissues of the oil palm. Transcriptional analysis using RT-PCR revealed successful transcription of all the three phbA, phbB, and phbC genes in transiently transformed mesocarp but not in transiently transformed leaf tissues. Furthermore, all the three expected sizes of PHB-encoded protein products were only detected in transiently transformed mesocarp tissues on a silver stained polyacrylamide gel. Western blot analysis using polyclonal antibody specific for phbB product confirmed successful translation of phbB mRNA transcript into protein product. This study provided valuable information, supporting the future engineering of PHB-producing transgenic palms.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  3. Tan Y, Neo PC, Najimudin N, Sudesh K, Muhammad TS, Othman AS, et al.
    J Basic Microbiol, 2010 Apr;50(2):179-89.
    PMID: 20082371 DOI: 10.1002/jobm.200900138
    Pseudomonas sp. USM 4-55 is a locally isolated bacterium that possesses the ability to produce polyhydroxyalkanoates (PHA) consisting of both poly(3-hydroxybutyrate) [P(3HB)] homopolymer and medium-chain length (mcl) monomers (6 to 14 carbon atoms) when sugars or fatty acids are utilized as the sole carbon source. In this study, the P(3HB) biosynthesis operon carrying the phbC(Ps) P(3HB) synthase was successfully cloned and sequenced using a homologous probe. Three open reading frames encoding NADPH-dependent acetoacetyl-coenzyme A reductase (PhbB(Ps)), beta-ketothiolase (PhbA(Ps)) and P(3HB) synthase (PhbC(Ps)) were found in the phb operon. The genetic organization of phb operon showed a putative promoter region, followed by phbB(Ps)-phbA(Ps)-phbC(Ps). phbR(Ps)which encoded a putative transcriptional activator was located in the opposite orientation, upstream of phbBAC(Ps). Heterologous expression of pGEM''ABex harboring phbC(Ps) in Escherichia coli JM109 resulted in P(3HB) accumulation of up to 40% of dry cell weight (DCW).
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  4. Masani MY, Parveez GK, Izawati AM, Lan CP, Siti Nor Akmar A
    Plasmid, 2009 Nov;62(3):191-200.
    PMID: 19699761 DOI: 10.1016/j.plasmid.2009.08.002
    One of the targets in oil palm genetic engineering programme is the production of polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV) in the oil palm leaf tissues. Production of PHB requires the use of phbA (beta-ketothiolase type A), phbB (acetoacetyl-CoA reductase) and phbC (PHB synthase) genes of Ralstonia eutropha, whereas bktB (beta-ketothiolase type B), phbB, phbC genes of R. eutropha and tdcB (threonine dehydratase) gene of Escherichia coli were used for PHBV production. Each of these genes was fused with a transit peptide (Tp) of oil palm acyl-carrier-protein (ACP) gene, driven by an oil palm leaf-specific promoter (LSP1) to genetically engineer the PHB/PHBV pathway to the plastids of the leaf tissues. In total, four transformation vectors, designated pLSP15 (PHB) and pLSP20 (PHBV), and pLSP13 (PHB) and pLSP23 (PHBV), were constructed for transformation in Arabidopsis thaliana and oil palm, respectively. The phosphinothricin acetyltransferase gene (bar) driven by CaMV35S promoter in pLSP15 and pLSP20, and ubiquitin promoter in pLSP13 and pLSP23 were used as the plant selectable markers. Matrix attachment region of tobacco (RB7MAR) was also included in the vectors to stabilize the transgene expression and to minimize silencing due to positional effect. Restriction digestion, PCR amplification and/or sequencing were carried out to ensure sequence integrity and orientation.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  5. Pachiyappan S, Shanmuganatham Selvanantham D, Kuppa SS, Chandrasekaran S, Samrot AV
    IET Nanobiotechnol, 2019 Jun;13(4):416-427.
    PMID: 31171747 DOI: 10.1049/iet-nbt.2018.5053
    In this study, polyhydroxybutyrate (PHB) nanoparticles were synthesised following nanoprecipitation method having different solvents and surfactant (Tween 80) concentrations. In this study, PHB nanoparticles were encapsulated with curcumin and subjected for sustained curcumin delivery. Both the curcumin loaded and unloaded PHB nanoparticles were characterised using FTIR, SEM, and AFM. Sizes of the particles were found to be between 60 and 300 nm. The drug encapsulation efficiency and in vitro drug release of the nanoparticles were analysed. Antibacterial activity and anticancer activity were also evaluated. The LC50 values of most of the nanoparticles were found to be between 10 and 20 µg/100 µl, anticancer activity of curcumin loaded PHB nanoparticles were further confirmed by AO/PI staining and mitochondrial depolarisation assay.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
  6. Mohd Zahari MA, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, Hassan MA
    J Biomed Biotechnol, 2012;2012:125865.
    PMID: 23133311 DOI: 10.1155/2012/125865
    Factors influencing poly(3-hydroxybutyrate) P(3HB) production by Cupriavidus necator CCUG52238(T) utilizing oil palm frond (OPF) juice were clarified in this study. Effects of initial medium pH, agitation speed, and ammonium sulfate (NH(4))(2)SO(4) concentration on the production of P(3HB) were investigated in shake flasks experiments using OPF juice as the sole carbon source. The highest P(3HB) content was recorded at pH 7.0, agitation speed of 220 rpm, and (NH(4))(2)SO(4) concentration at 0.5 g/L. By culturing the wild-type strain of C. necator under the aforementioned conditions, the cell dry weight (CDW) and P(3HB) content obtained were 9.31 ± 0.13 g/L and 45 ± 1.5 wt.%, respectively. This accounted for 40% increment of P(3HB) content compared to the nonoptimized condition. In the meanwhile, the effect of dissolved oxygen tension (DOT) on P(3HB) production was investigated in a 2-L bioreactor. Highest CDW (11.37 g/L) and P(3HB) content (44 wt.%) were achieved when DOT level was set at 30%. P(3HB) produced from OPF juice had a tensile strength of 40 MPa and elongation at break of 8% demonstrated that P(3HB) produced from renewable and cheap carbon source is comparable to those produced from commercial substrate.
    Matched MeSH terms: Hydroxybutyrates/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links