Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Miskandar MS, Man YC, Yusoff MS, Rahman RA
    Asia Pac J Clin Nutr, 2005;14(4):387-95.
    PMID: 16326646
    Optimum processing conditions on palm oil-based formulations are required to produce the desired quality margarine. As oils and fats contribute to the overall property of the margarine, this paper will review the importance of beta' tending oils and fats in margarine formulation, effects of the processing parameters -- emulsion temperature, flow-rate, product temperature and pin-worker speed -- on palm oil margarines produced and their subsequent behaviour in storage. Palm oil, which contributes the beta' crystal polymorph and the best alternative to hydrogenated liquid fats, and the processing conditions can affect the margarine consistency by influencing the solid fat content (SFC) and the types of crystal polymorph formed during production as well as in storage. Palm oil, or hydrogenated palm oil and olein, in mixture with oils of beta tending, can veer the product to the beta' crystal form. However, merely having beta' crystal tending oils is not sufficient as the processing conditions are also important. The emulsion temperature had no significant effect on the consistency and polymorphic changes of the product during storage, even though differences were observed during processing. The consistency of margarine during storage was high at low emulsion flow-rates and low at high flow rates. The temperature of the scraped-surface tube-cooler is the most important parameter in margarine processing. High temperature will produce a hardened product with formation of beta-crystals during storage. The speed of the pin-worker is responsible for inducing crystallization but, at the same time, destroys the crystal agglomerates, resulting in melting.
    Matched MeSH terms: Food-Processing Industry/methods
  2. Mohd MH, Rahman MAA, Nazri MN, Tan CH, Mohamad Y, Lim CS, et al.
    ScientificWorldJournal, 2020;2020:4695894.
    PMID: 33223970 DOI: 10.1155/2020/4695894
    Decommissioning of the offshore platform as an artificial reef, known as Rigs-to-Reefs (R2R), has become a sustainable approach for oil companies. The platform was reused to serve the underwater ecosystem as an artificial reef for a new marine ecosystem which helps to tackle food security issue. This paper presents the findings of the formulation of the reefing viability index to recognize an offshore region that can be used for R2R projects within the South China Sea. The combined effects of spatial data, numerical modelling, and geographic system (GIS) are proposed to study the relationship of spawning ground coral reefs, diversity, and planula larvae in the process of colonization to establish a map of the reef potential environment. Coral connectivity and spawning behaviour were studied to determine the possible source of coral seedling released during the spawning season, twice a year. A geographic reef viability index was established consisting of seven parameters which are coral larval density, pelagic larval length, sea currents, temperature, chlorophyll-a, depth, and substrate availability. The ocean hydrodynamic model was designed to resemble the pattern of larval scattering. By using the simulations and rankings, there were 95 (21%) sites which could probably be used for in situ reefing, whereas 358 (79%) sites were likely ideal for ex situ reefing. Validation of the viability index was carried out using media footage assessment of remotely operated vehicle (ROV).
    Matched MeSH terms: Oil and Gas Industry/methods
  3. Loo HS, Yeow PH
    Appl Ergon, 2015 Nov;51:383-91.
    PMID: 26154237 DOI: 10.1016/j.apergo.2015.06.007
    The research aims to address the physically loading task and quality and productivity problems in the brazing of coils of air-handler units. Eight operators participated in two intervention studies conducted in a factory in Malaysia to compare the status quo brazing with (1) the use of a new twin-brazing torch that replaced the single-brazing gun and (2) brazing in a sitting position. The outcome measures are related to quality, productivity, monetary costs, body postures and symptoms. After baseline, Interventions I and II were applied for 3 months respectively. The results show a 58.9% quality improvement, 140% productivity increase and 113 times ROI. There was also a reduction in poor work postures e.g. in the raising of the arms and shoulders; bending, twisting and extending of the neck; and bending of left and right wrists, and the back. This research can be replicated in other factories that share similar processes.
    Matched MeSH terms: Manufacturing Industry/methods*
  4. Vogel K, Karltun J, Yeow PH, Eklund J
    Meat Sci, 2015 Jul;105:81-8.
    PMID: 25828161 DOI: 10.1016/j.meatsci.2015.03.009
    The beef industry worldwide is showing a trend towards increased cutting pace aimed at higher profits. However, prior research in the duck meat industry suggested that a higher cutting pace reduced quality and yield, leading to losses. This study aimed to test this hypothesis by investigating the effects of varying beef-cutting paces on yield, quality and economy. A field experiment was conducted on six workers cutting beef fillet, sirloin and entrecôte. Three types of paces were sequentially tested: Baseline (i.e., status quo), 'Quantity focus' (i.e., pace required to maximise quantity) and 'Quality focus' (i.e., pace required to minimise errors). The results showed a significant drop in yield, increased rate of quality deficiency and economic losses with the change to 'Quantity focus' (from Baseline and 'Quality focus') for all meat types. Workers supported these results and also added health problems to the list. The results confirmed that an increased cutting pace is unprofitable.
    Matched MeSH terms: Meat-Packing Industry/methods*
  5. He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, et al.
    BMC Biotechnol, 2017 02 28;17(1):22.
    PMID: 28245836 DOI: 10.1186/s12896-017-0343-8
    BACKGROUND: α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed.

    RESULTS: A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0-20 °C. The K m and V max values toward soluble starch were 2.51 mg/mL and 8.24 × 10-2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization.

    CONCLUSIONS: A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications.

    Matched MeSH terms: Food Industry/methods
  6. Hajeb P, Jinap S, Shakibazadeh Sh, Afsah-Hejri L, Mohebbi GH, Zaidul IS
    PMID: 25090228 DOI: 10.1080/19440049.2014.942707
    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.
    Matched MeSH terms: Food-Processing Industry/methods*
  7. Wong MS, Sidik SM, Mahmud R, Stanslas J
    Clin Exp Pharmacol Physiol, 2013 May;40(5):307-19.
    PMID: 23534409 DOI: 10.1111/1440-1681.12083
    Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
    Matched MeSH terms: Drug Industry/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links