Displaying publications 21 - 40 of 61 in total

Abstract:
Sort:
  1. Lim Kok Hooi A
    Gan To Kagaku Ryoho, 1992 Jul;19(8 Suppl):1233-5.
    PMID: 1514837
    Matched MeSH terms: Infusions, Intravenous
  2. Lim TA, Inbasegaran K
    Br J Anaesth, 2001 Mar;86(3):422-4.
    PMID: 11573534
    We derived the predicted effect compartment concentration of thiopental, at loss of the eyelash reflex, following three different injection regimens. Sixty patients were given thiopental for induction of anaesthesia. Twenty patients received multiple small boluses, 20 patients received a single bolus and 20 patients received an infusion. Computer simulation was then used to derive the effect compartment concentration. The median concentration was not significantly different between the three groups. EC50, derived after combining all three groups was 11.3 microg ml(-1). The EC05-EC95 range was 6.9-18.3 microg ml(-1), suggesting wide inter-individual variation.
    Matched MeSH terms: Infusions, Intravenous
  3. Lim TA
    Br J Anaesth, 2003 Nov;91(5):730-2.
    PMID: 14570797
    BACKGROUND: Calculation of the effect compartment concentration (Ce) in non-steady-state conditions requires the equilibrium rate constant, keo. Most studies of propofol derive the keo using EEG measurements. This study investigated an alternative method. Starting from a predicted concentration-time profile, a keo value was included so that the predicted Ce at a specific pharmacodynamic end-point was the same when using three different methods of injection.

    METHODS: Seventy-five patients were given propofol for induction of anaesthesia. Twenty-five patients received a single bolus, 25 patients received an infusion, and 25 patients received a bolus followed by an infusion. Computer simulation was used to derive the central compartment concentration. The keo that brought about the same value for Ce at loss of the eyelash reflex using the three methods of injection was derived.

    RESULTS: Keo was found to be 0.80 min(-1). Mean (SD) Ce at loss of the eyelash reflex was 2.27 (0.69) microg ml(-1).

    CONCLUSIONS: The effect compartment equilibrium rate constant and concentration at loss of the eyelash reflex can be derived without the use of electronic central nervous system monitors.

    Matched MeSH terms: Infusions, Intravenous
  4. Loke SC, Kanesvaran R, Yahya R, Fisal L, Wong TW, Loong YY
    Ann Acad Med Singap, 2009 Dec;38(12):1074-80.
    PMID: 20052443
    INTRODUCTION: Intravenous calcium gluconate has been used to prevent postoperative hypocalcaemia (POH) following parathyroidectomy for secondary hyperparathyroidism in chronic kidney disease (CKD).

    MATERIALS AND METHODS: Retrospective data were obtained for 36 patients with CKD stage 4 and 5 after parathyroid surgery, correlating albumin-corrected serum calcium with the infusion rate of calcium gluconate. Calcium flux was characterised along with excursions out of the target calcium range of 2 to 3 mmol/L. With this data, an improved titration regimen was constructed.

    RESULTS: Mean peak efflux rate (PER) from the extracellular calcium pool was 2.97 mmol/h occurring 26.6 hours postoperatively. Peak calcium efflux tended to occur later in cases of severe POH. Eighty-one per cent of patients had excursions outside of the target calcium range of 2 to 3 mmol/L. Mean time of onset for hypocalcaemia was 2 days postoperatively. Hypocalcaemia was transient in 25% and persistent in 11% of patients.

    CONCLUSION: A simple titration regimen was constructed in which a 10% calcium gluconate infusion was started at 4.5 mL/h when serum calcium was <2 mmol/L, then increased to 6.5 mL/h and finally to 9.0 mL/h if calcium continued falling. Preoperative oral calcium and calcitriol doses were maintained. Blood testing was done 6-hourly, but when a higher infusion rate was needed, 4-hourly blood testing was preferred. Monitoring was discontinued if no hypocalcaemia developed in the fi rst 4 days after surgery. If hypocalcaemia persisted 6 days after surgery, then the infusion was stopped with further monitoring for 24 hours.

    Matched MeSH terms: Infusions, Intravenous
  5. Mohd Hafiz AA, Staatz CE, Kirkpatrick CM, Lipman J, Roberts JA
    Minerva Anestesiol, 2012 Jan;78(1):94-104.
    PMID: 21730935
    Beta-lactam antibiotics display time-dependant pharmacodynamics whereby constant antibiotic concentrations rather than high peak concentrations are most likely to result in effective treatment of infections caused by susceptible bacteria. Continuous administration has been suggested as an alternative strategy, to conventional intermittent dosing, to optimise beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) properties. With the availability of emerging data, we elected to systematically investigate the published literature describing the comparative PK/PD and clinical outcomes of beta-lactam antibiotics administered by continuous or intermittent infusion. We found that the studies have been performed in various patient populations including critically ill, cancer and cystic fibrosis patients. Available in vitro PK/PD data conclusively support the administration of beta-lactams via continuous infusion for maximizing bacterial killing from consistent attainment of pharmacodynamic end-points. In addition, clinical outcome data supports equivalence, even with the use of a lower dose by continuous infusion. However, the present clinical data is limited with small sample sizes common with insufficient power to detect advantages in favour of either dosing strategy. With abundant positive pre-clinical data as well as document in vivo PK/PD advantages, large multi-centre trials are needed to describe whether continuous administration of beta-lactams is truly more effective than intermittent dosing.
    Matched MeSH terms: Infusions, Intravenous
  6. Naing CM, Win DK
    Trans R Soc Trop Med Hyg, 2010 May;104(5):311-2.
    PMID: 20206954 DOI: 10.1016/j.trstmh.2010.02.001
    Permanent neurological impairment or death arising from hospital-acquired hyponatremia in both children and adults is well documented. The choice of intravenous fluids for fluid resuscitation in critically ill patients is a top priority in evidence-based medicine. The question of whether colloids in comparison to crystalloids can improve mortality in such cases remains to be answered. Well powered, randomized clinical trials addressing the comparative efficacy of different types of intravenous fluids is a high priority as is the ethical justification for such trials. The understanding of the pathophysiological process serves important information on clinical practice.
    Matched MeSH terms: Infusions, Intravenous
  7. Ng CV
    Ann Pharmacother, 2005 Jun;39(6):1114-8.
    PMID: 15886290
    To report 2 cases of hypersensitivity reactions associated with oxaliplatin treatment in Asian patients.
    Matched MeSH terms: Infusions, Intravenous
  8. Ng KT, Yap JLL
    Anaesthesia, 2018 Feb;73(2):238-247.
    PMID: 28940440 DOI: 10.1111/anae.14038
    Loop diuretics remain a fundamental pharmacological therapy to remove excess fluid and improve symptom control in acute decompensated heart failure. Several recent randomised controlled trials have examined the clinical benefit of continuous vs. bolus furosemide in acute decompensated heart failure, but have reported conflicting findings. The aim of this review was to compare the effects of continuous and bolus furosemide with regard to mortality, length of hospital stay and its efficacy profile in acute decompensated heart failure. All parallel-arm randomised controlled trials from MEDLINE, EMBASE, PubMed and the Cochrane Database of Systematic Reviews from inception until May 2017 were included. Cross-over randomised controlled trials, observational studies, case reports, case series and non-systematic reviews that involved children were excluded. Eight trials (n = 669) were eligible for inclusion. There was no difference between furosemide continuous infusion and bolus administration for all-cause mortality (four studies; n = 491; I2 = 0%; OR 1.65; 95%CI 0.93-2.91; p = 0.08) or duration of hospitalisation (six studies; n = 576; I2 = 71%; mean difference 0.27; 95%CI -1.35 to 1.89 days; p = 0.74). Continuous infusion of intravenous furosemide was associated with increased weight reduction (five studies; n = 516; I2 = 0%; mean difference 0.70; 95%CI 0.12-1.28 kg; p = 0.02); increased total urine output in 24 h (four studies; n = 390; I2 = 33%; mean difference 461.5; 95%CI 133.7-789.4 ml; p < 0.01); and reduced brain natriuretic peptide (two studies; n = 390; I2 = 0%; mean difference 399.5; 95%CI 152.7-646.3 ng.l-1 ; p < 0.01), compared with the bolus group. There was no difference in the incidence of raised creatinine and hypokalaemia between the two groups. In summary, there was no difference between continuous infusion and bolus of furosemide for all-cause mortality, length of hospital stay and electrolyte disturbance, but continuous infusion was superior to bolus administration with regard to diuretic effect and reduction in brain natriuretic peptide.
    Matched MeSH terms: Infusions, Intravenous
  9. Ng KT, Velayit A, Khoo DKY, Mohd Ismail A, Mansor M
    J Cardiothorac Vasc Anesth, 2018 10;32(5):2303-2310.
    PMID: 29454528 DOI: 10.1053/j.jvca.2018.01.004
    OBJECTIVE: Fluid overload is a common phenomenon seen in intensive care units (ICUs). However, there is no general consensus on whether continuous or bolus furosemide is safer or more effective in these hemodynamically unstable ICU patients. The aim of this meta-analysis was to examine the clinical outcomes of continuous versus bolus furosemide in a critically ill population in ICUs.

    DATA SOURCES: MEDLINE, EMBASE, PubMed, and the Cochrane Database of Systematic reviews were searched from their inception until June 2017.

    REVIEW METHODS: All randomized controlled trials, observational studies, and case-control studies were included. Case reports, case series, nonsystematic reviews, and studies that involved children were excluded.

    RESULTS: Nine studies (n = 464) were eligible in the data synthesis. Both continuous and bolus furosemide resulted in no difference in all-cause mortality (7 studies; n = 396; I2 = 0%; fixed-effect model [FEM]: odds ratio [OR] 1.15 [95% confidence interval (CI) 0.67-1.96]; p = 0.64). Continuous furosemide was associated with significant greater total urine output (n = 132; I2 = 70%; random-effect model: OR 811.19 [95% CI 99.84-1,522.53]; p = 0.03), but longer length of hospital stay (n = 290; I2 = 40%; FEM: OR 2.84 [95% CI 1.74-3.94]; p < 0.01) in comparison to the bolus group. No statistical significance was found in the changes of creatinine and estimated glomerular filtration rate between both groups.

    CONCLUSIONS: In this meta-analysis, continuous furosemide was associated with greater diuretic effect in total urine output as compared with bolus. Neither had any differences in mortality and changes of renal function tests. However, a large adequately powered randomized clinical trial is required to fill this knowledge gap.

    Matched MeSH terms: Infusions, Intravenous
  10. Ngeow WC, Chai WL, Moody AB
    J Ir Dent Assoc, 2000;46(3):92-4.
    PMID: 11323942
    Red man syndrome (RMS) is the occurrence flushing, pruritus, chest pain, muscle spasm or hypotension during vancomycin infusion. It usually happens as a result of rapid infusion of the drug but may also occur after slow administration. The frequency and severity of this phenomenon diminish with repeated administration of vancomycin. A case is presented whereby RMS occurred while prophylactic antibiotic against infective endocarditis was administered.
    Matched MeSH terms: Infusions, Intravenous
  11. Omar KZ, Ariffin H, Abdullah WA, Chan LL, Lin HP
    Med. Pediatr. Oncol., 2000 May;34(5):377-8.
    PMID: 10797367
    Matched MeSH terms: Infusions, Intravenous
  12. Ong WM, Subasyini S
    Med J Malaysia, 2013;68(1):52-7.
    PMID: 23466768 MyJurnal
    Medications given via the intravenous (IV) route provide rapid drug delivery to the body. IV therapy is a complex process requiring proper drug preparation before administration to the patients. Therefore, errors occurring at any stage can cause harmful clinical outcomes to the patients, which may lead to morbidity and mortality. This was a prospective observational study with the objectives to determine whether medication errors occur in IV drug preparation and administration in Selayang Hospital, determining the associated factors and identifying the strategies in reducing these medication errors. 341 (97.7%) errors were identified during observation of total 349 IV drug preparations and administrations. The most common errors include the vial tap not swabbed during prepreparation and injecting bolus doses faster than the recommended administration rate. There was one incident of wrong drug attempted. Errors were significantly more likely to occur during administration time at 8.00am and when bolus drugs were given. Errors could be reduced by having proper guidelines on IV procedures, more common use of IV infusion control devices and by giving full concentration during the process. Awareness among the staff nurses and training needs should be addressed to reduce the rate of medication errors. Standard IV procedures should be abided and this needs the cooperation and active roles from all healthcare professionals as well as the staff nurses.
    Study site: Hospital Selayang, Kuala Lumpur
    Matched MeSH terms: Infusions, Intravenous
  13. Osthoff M, Siegemund M, Balestra G, Abdul-Aziz MH, Roberts JA
    Swiss Med Wkly, 2016;146:w14368.
    PMID: 27731492 DOI: 10.4414/smw.2016.14368
    Prolonged infusion of β-lactam antibiotics as either extended (over at least 2 hours) or continuous infusion is increasingly applied in intensive care units around the world in an attempt to optimise treatment with this most commonly used class of antibiotics, whose effectiveness is challenged by increasing resistance rates. The pharmacokinetics of β-lactam antibiotics in critically ill patients is profoundly altered secondary to an increased volume of distribution and the presence of altered renal function, including augmented renal clearance. This may lead to a significant decrease in plasma concentrations of β-lactam antibiotics. As a consequence, low pharmacokinetic/pharmacodynamic (PK/PD) target attainment, which is described as the percentage of time that the free drug concentration is maintained above the minimal inhibitory concentration (MIC) of the causative organism (fT>MIC), has been documented for β-lactam treatment in these patients when using standard intermittent bolus dosing, even for the most conservative target (50% fT>MIC). Prolonged infusion of β-lactams has consistently been shown to improve PK/PD target attainment, particularly in patients with severe infections. However, evidence regarding relevant patient outcomes is still limited. Whereas previous observational studies have suggested a clinical benefit of prolonged infusion, results from two recent randomised controlled trials of continuous infusion versus intermittent bolus administration of β-lactams are conflicting. In particular, the larger, double-blind placebo-controlled randomised controlled trial including 443 patients did not demonstrate any difference in clinical outcomes. We believe that a personalised approach is required to truly optimise β-lactam treatment in critically ill patients. This may include therapeutic drug monitoring with real-time adaptive feedback, rapid MIC determination and the use of antibiotic dosing software tools that incorporate patient parameters, dosing history, drug concentration and site of infection. Universal administration of β-lactam antibiotics as prolonged infusion, even if supported by therapeutic drug monitoring, is not yet ready for "prime time", as evidence for its clinical benefit is modest. There is a need for prospective randomised controlled trials that assess patient-centred outcomes (e.g. mortality) of a personalised approach in selected critically ill patients including prolonged infusion of β-lactams compared with the current standard of care.
    Matched MeSH terms: Infusions, Intravenous/methods*
  14. Peyman M, Subrayan V
    JAMA Ophthalmol, 2013 Oct;131(10):1368-9.
    PMID: 23929315 DOI: 10.1001/jamaophthalmol.2013.4489
    Matched MeSH terms: Infusions, Intravenous
  15. Raheem IA, Saaid R, Omar SZ, Tan PC
    BJOG, 2012 Jan;119(1):78-85.
    PMID: 21985500 DOI: 10.1111/j.1471-0528.2011.03151.x
    To compare oral nifedipine with intravenous labetalol in their rapidity to control hypertensive emergencies of pregnancy.
    Matched MeSH terms: Infusions, Intravenous
  16. Rehman A, Rahman AR, Rasool AH, Naing NN
    Int J Clin Pharmacol Ther, 2001 Oct;39(10):423-30.
    PMID: 11680667
    To examine the dose response relationship between Ang II and pulse wave velocity (an index of arterial stiffness) in healthy human volunteers.
    Matched MeSH terms: Infusions, Intravenous
  17. Ridzwan BH, Waton NG
    PMID: 1982867
    1. Oral administration of [14C]histamine induced the presence of small amounts of [14C]histamine in stomach and ileal tissues of control guinea-pigs. In contrast, much larger amounts were found after 8 h infusion. 2. Similar amounts of [14C]histamine were found in the tissues when [14C]histamine was given by intravenous infusion from 24-30 h after chlorpromazine injection.
    Matched MeSH terms: Infusions, Intravenous
  18. Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al.
    Am J Respir Crit Care Med, 2016 Sep 15;194(6):681-91.
    PMID: 26974879 DOI: 10.1164/rccm.201601-0024OC
    RATIONALE: Optimization of β-lactam antibiotic dosing for critically ill patients is an intervention that may improve outcomes in severe sepsis.

    OBJECTIVES: In this individual patient data meta-analysis of critically ill patients with severe sepsis, we aimed to compare clinical outcomes of those treated with continuous versus intermittent infusion of β-lactam antibiotics.

    METHODS: We identified relevant randomized controlled trials comparing continuous versus intermittent infusion of β-lactam antibiotics in critically ill patients with severe sepsis. We assessed the quality of the studies according to four criteria. We combined individual patient data from studies and assessed data integrity for common baseline demographics and study endpoints, including hospital mortality censored at 30 days and clinical cure. We then determined the pooled estimates of effect and investigated factors associated with hospital mortality in multivariable analysis.

    MEASUREMENTS AND MAIN RESULTS: We identified three randomized controlled trials in which researchers recruited a total of 632 patients with severe sepsis. The two groups were well balanced in terms of age, sex, and illness severity. The rates of hospital mortality and clinical cure for the continuous versus intermittent infusion groups were 19.6% versus 26.3% (relative risk, 0.74; 95% confidence interval, 0.56-1.00; P = 0.045) and 55.4% versus 46.3% (relative risk, 1.20; 95% confidence interval, 1.03-1.40; P = 0.021), respectively. In a multivariable model, intermittent β-lactam administration, higher Acute Physiology and Chronic Health Evaluation II score, use of renal replacement therapy, and infection by nonfermenting gram-negative bacilli were significantly associated with hospital mortality. Continuous β-lactam administration was not independently associated with clinical cure.

    CONCLUSIONS: Compared with intermittent dosing, administration of β-lactam antibiotics by continuous infusion in critically ill patients with severe sepsis is associated with decreased hospital mortality.

    Matched MeSH terms: Infusions, Intravenous/methods
  19. Rohana J, Boo NY, Thambidorai CR
    Singapore Med J, 2008 Feb;49(2):142-4.
    PMID: 18301842
    This prospective observational study was conducted to determine the outcome of newborns with congenital diaphragmatic hernia (CDH). They were managed with a protocol of gentle ventilation to avoid barotraumas, and inhaled nitric oxide (iNO) or intravenous magnesium sulphate for treatment of persistent pulmonary hypertension of newborns (PPHN).
    Matched MeSH terms: Infusions, Intravenous
  20. Sakijan AS, Tamanang S
    Med J Malaysia, 1988 Sep;43(3):252-4.
    PMID: 3241586
    Matched MeSH terms: Infusions, Intravenous
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links