Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Tan MSF, Rahman S, Dykes GA
    Food Microbiol, 2017 Apr;62:62-67.
    PMID: 27889167 DOI: 10.1016/j.fm.2016.10.009
    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm2) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce.
    Matched MeSH terms: Lettuce/microbiology
  2. Safdar ME, Wang X, Abbas M, Ozaslan C, Asif M, Adnan M, et al.
    PLoS One, 2021;16(11):e0258920.
    PMID: 34739485 DOI: 10.1371/journal.pone.0258920
    Weed infestation is a persistent problem for centuries and continues to be major yield reducing issue in modern agriculture. Chemical weed control through herbicides results in numerous ecological, environmental, and health-related issues. Moreover, numerous herbicides have evolved resistance against available herbicides. Plant extracts are regarded as an alternative to herbicides and a good weed management option. The use of plant extracts is environmentally safe and could solve the problem of herbicide resistance. Therefore, laboratory and wire house experiments were conducted to evaluate the phytotoxic potential of three Fabaceae species, i.e., Cassia occidentalis L. (Coffee senna), Sesbania sesban (L.) Merr. (Common sesban) and Melilotus alba Medik. (White sweetclover) against seed germination and seedling growth of some broadleaved weed species. Firstly, N-hexane and aqueous extracts of these species were assessed for their phytotoxic effect against lettuce (Lactuca sativa L.). The extracts found more potent were further tested against germination and seedling growth of four broadleaved weed species, i.e., Parthenium hysterophorus L. (Santa-Maria), Trianthema portulacastrum L. (Pigweed), Melilotus indica L (Indian sweetclover). and Rumex dentatus L. (Toothed dock) in Petri dish and pot experiments. Aqueous extracts of all species were more toxic than their N-hexane forms for seed germination and seedling growth of lettuce; therefore, aqueous extracts were assessed for their phytotoxic potential against four broadleaved weed species. Aqueous extracts of all species proved phytotoxic against T. portulacastrum, P. hysterophorus, M. indica and R. dentatus and retarder their germination by 57, 90, 100 and 58%, respectively. Nevertheless, foliar spray of C. occidentalis extract was the most effective against T. portulacastrum as it reduced its dry biomass by 72%, while M. alba was effective against P. hysterophorus, R. dentatus and M. indica and reduced their dry biomass by 55, 68 and 81%, respectively. It is concluded that aqueous extracts of M. alba, S. sesban and C. occidentalis could be used to retard seed germination of T. portulacastrum, P. hysterophorus, M. indica and R. dentatus. Similarly, aqueous extracts of C. occidentalis can be used to suppress dry biomass of T. portulacastrum, and those of M. alba against P. hysterophorus, R. dentatus. However, use of these extracts needs their thorough testing under field conditions.
    Matched MeSH terms: Lettuce/metabolism; Lettuce/chemistry
  3. Dang F, Li C, Nunes LM, Tang R, Wang J, Dong S, et al.
    Environ Int, 2023 Jun;176:107990.
    PMID: 37247467 DOI: 10.1016/j.envint.2023.107990
    Food security and sustainable development of agriculture has been a key challenge for decades. To support this, nanotechnology in the agricultural sectors increases productivity and food security, while leaving complex environmental negative impacts including pollution of the human food chains by nanoparticles. Here we model the effects of silver nanoparticles (Ag-NPs) in a food chain consisting of soil-grown lettuce Lactuca sativa and snail Achatina fulica. Soil-grown lettuce were exposed to sulfurized Ag-NPs via root or metallic Ag-NPs via leaves before fed to snails. We discover an important biomagnification of silver in snails sourced from plant root uptake, with trophic transfer factors of 2.0-5.9 in soft tissues. NPs shifts from original size (55-68 nm) toward much smaller size (17-26 nm) in snails. Trophic transfer of Ag-NPs reprograms the global metabolic profile by down-regulating or up-regulating metabolites for up to 0.25- or 4.20- fold, respectively, relative to the control. These metabolites control osmoregulation, phospholipid, energy, and amino acid metabolism in snails, reflecting molecular pathways of biomagnification and pontential adverse biological effects on lower trophic levels. Consumption of these Ag-NP contaminated snails causes non-carcinogenic effects on human health. Global public health risks decrease by 72% under foliar Ag-NP application in agriculture or through a reduction in the consumption of snails sourced from root application. The latter strategy is at the expense of domestic economic losses in food security of $177.3 and $58.3 million annually for countries such as Nigeria and Cameroon. Foliar Ag-NP application in nano-agriculture has lower hazard quotient risks on public health than root application to ensure global food safety, as brought forward by the United Nations Sustainable Development Goals.
    Matched MeSH terms: Lettuce/chemistry
  4. Nurul Izzah Ahmad, Aminah Abdullah, Md Pauzi Abdullah, Lee, Yook Heng, Wan Rozita Wan Mahiyuddin, Siti Fatimah Daud, et al.
    MyJurnal
    A survey was conducted to investigate the level of consumption of ‘ulam’ in Selangor State among 252 adults (> 17 years) (male 28.6%, female 71.4%) of major ethnics (Malays-51.6%; Chinese-30.5%; Indians-17.5%) with the mean age of 42.7 ± 13.9 years. Consumption data were collected using 24 hours duplicate samples together with questionnaire on perceptions of ‘ulam.’ Results showed that ‘ulam’ was preferred by majority of the subjects (82.1%), especially amongst Malays (92.3%). A total of 52% of the subjects consumed partially or boiled ‘ulam.’ Factors that affect their preferences on ‘ulam’ were the perception of therapeutic effects of the ‘ulam’ towards health, its good taste and unique
    aroma. The most consumed ‘ulam’ were cucumber (Cucumis sativus) (60.6%) ‘kacang botol’ (Psophocarpus tetragonolobus) (33%), Indian pennywort (Hydrocotyle asiatica) (31.5%), lettuce (Lactuca sativa) (27.6%), ‘petai’ (Parkia speciosa) (29%) and ‘ulam raja’ (Cosmos caudatus) (21.9%). The most preferred partially or boiled ‘ulam’
    were tapioca shoot (Manihot esculenta) (31.5%), ocra (Hibiscus esculentus) (12.5%) and ‘jantung pisang’ (Musa sapientum) (20.1%). There was no significant difference (P > 0.05) amongst the three different ethnic groups on the consumption of ‘ulam’ and the median for total intake per day was within the range of 30-39 g/day. Ulam is a potential
    source for increasing vegetable consumption to meet recommendation by World Health Organization (WHO), which is 400 g per day.
    Keywords: Adults; perception; ‘ulam;’ Selangor State
    Matched MeSH terms: Lettuce
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links