Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Jesse FFA, Chung ELT, Abba Y, Muniandy KV, Tan AHAR, Maslamany D, et al.
    Trop Anim Health Prod, 2019 Feb;51(2):289-295.
    PMID: 30088124 DOI: 10.1007/s11250-018-1683-7
    Pneumonic pasteurellosis is an economically important infectious disease in the small ruminant industry which causes sudden death and loss for farmers. Nonetheless, this disease is still a common sight in sheep and goats in Malaysia, probably due to the unpopular usage of pasteurellosis vaccine or inappropriate vaccination practices. The aim of this study was designed to classify the severity of pneumonia via the establishment of auscultation scoring method and to quantify the acute phase proteins and heat shock proteins responses from vaccinated and non-vaccinated goats. Goat farms, consist of vaccinated and non-vaccinated farms, were selected in this study: where 15 clinically normal healthy goats and 9 pneumonic goats were selected from vaccinated farms whereas 15 clinically normal healthy goats and 31 pneumonic goats from non-vaccinated farms were selected for this study. Crackle lung sounds were not detected in both vaccinated and non-vaccinated normal goats. However, vaccinated pneumonic goats showed mild crackle lung sound while non-vaccinated pneumonic goats exhibited moderate crackle lung sound. There were significant increases (p 
    Matched MeSH terms: Lung/physiopathology*
  2. Chai CS, Liam CK, Pang YK, Ng DL, Tan SB, Wong TS, et al.
    Int J Chron Obstruct Pulmon Dis, 2019 03 01;14:565-573.
    PMID: 30880946 DOI: 10.2147/COPD.S196109
    Introduction: The Spanish COPD guideline (GesEPOC) classifies COPD into four clinical phenotypes based on the exacerbation frequency and dominant clinical manifestations. In this study, we compared the disease-specific health-related quality of life (HRQoL) of patients with different clinical phenotypes.

    Methods: This was a cross-sectional study of patients with COPD attending the respiratory medicine clinic of University of Malaya Medical Centre from 1 June 2017 to 31 May 2018. Disease-specific HRQoL was assessed by using the COPD Assessment Test (CAT) and St George's Respiratory Questionnaire for COPD (SGRQ-c).

    Results: Of 189 patients, 28.6% were of non-exacerbator phenotype (NON-AE), 18.5% were of exacerbator with emphysema phenotype (AE NON-CB), 39.7% were of exacerbator with chronic bronchitis phenotype (AE CB), and 13.2% had asthma-COPD overlap syndrome phenotype (ACOS). The total CAT and SGRQ-c scores were significantly different between the clinical phenotypes (P<0.001). Patients who were AE CB had significantly higher total CAT score than those with ACOS (P=0.033), AE NON-CB (P=0.001), and NON-AE (P<0.001). Concerning SGRQ-c, patients who were AE CB also had a significantly higher total score than those with AE NON-CB (P=0.001) and NON-AE (P<0.001). However, the total SGRQ-c score of AE CB patients was only marginally higher than those who had ACOS (P=0.187). There was a significant difference in the score of each CAT item (except CAT 7) and SGRQ-c components between clinical phenotypes, with AE CB patients recording the highest score in each of them.

    Conclusion: Patients who were AE CB had significantly poorer HRQoL than other clinical phenotypes and recorded the worst score in each of the CAT items and SGRQ-c components. Therefore, AE CB patients may warrant a different treatment approach that focuses on the exacerbation and chronic bronchitis components.

    Matched MeSH terms: Lung/physiopathology*
  3. Nabi FG, Sundaraj K, Lam CK, Palaniappan R
    J Asthma, 2020 04;57(4):353-365.
    PMID: 30810448 DOI: 10.1080/02770903.2019.1576193
    Objective: This study aimed to statistically analyze the behavior of time-frequency features in digital recordings of wheeze sounds obtained from patients with various levels of asthma severity (mild, moderate, and severe), and this analysis was based on the auscultation location and/or breath phase. Method: Segmented and validated wheeze sounds were collected from the trachea and lower lung base (LLB) of 55 asthmatic patients during tidal breathing maneuvers and grouped into nine different datasets. The quartile frequencies F25, F50, F75, F90 and F99, mean frequency (MF) and average power (AP) were computed as features, and a univariate statistical analysis was then performed to analyze the behavior of the time-frequency features. Results: All features generally showed statistical significance in most of the datasets for all severity levels [χ2 = 6.021-71.65, p 
    Matched MeSH terms: Lung/physiopathology
  4. Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I
    Expert Opin Ther Pat, 2020 May;30(5):375-387.
    PMID: 32178542 DOI: 10.1080/13543776.2020.1741547
    Introduction: Pulmonary route is one of the preferred routes for the administration of therapeutically active agents for systemic as well as localized delivery. Chronic obstructive pulmonary disease (COPD), bronchial asthma, pneumonia, pulmonary hypertension, bronchiolitis, lung cancer, and tuberculosis are the major chronic diseases associated with the pulmonary system. Knowledge about the affecting factors, namely, the etiology, pathophysiology, and the various barriers (mechanical, chemical, immunological, and behavioral) in pulmonary drug delivery is essential to develop an effective drug delivery system. Formulation strategies and mechanisms of particle deposition in the lungs also play an important role in designing a suitable delivery system.Areas covered: In the present paper, various drug delivery strategies, viz. nanoparticles, microparticles, liposomes, powders, and microemulsions have been discussed systematically, from a patent perspective.Expert opinion: Patent publications on formulation strategies have been instrumental in the evolution of new techniques and technologies for safe and effective treatment of pulmonary diseases. New delivery systems are required to be simple/reproducible/scalable/cost-effective scale for manufacturing ability and should be safe/effective/stable/controllable for meeting quality and regulatory compliance.
    Matched MeSH terms: Lung/physiopathology
  5. Jamil PASM, Karuppiah K, Rasdi I, How V, Tamrin SBM, Mani KKC, et al.
    Ann Glob Health, 2020 07 28;86(1):84.
    PMID: 32775216 DOI: 10.5334/aogh.2895
    Background: Apart from being exposed to various hazards, there are several other factors that contribute to the deterioration of traffic police health.

    Objectives: A cross-sectional study was carried out to explore the association of occupational, socio-demographic, and lifestyle factors with lung functions in traffic policemen in Kuala Lumpur (KL) and Johor Bahru (JB).

    Methods: A spirometer was used to measure lung function of subjects, whereas a self-administered questionnaire was used to obtain their information on background data, lifestyle, and occupational factors. The statistical test used was Spearman rho's test and chi-square test; then, the factors were further tested using Logistic regressions.

    Findings: 134 male subjects were selected as respondents in this study with 83% response rate. Among all the factors tested, age (FVC: χ = 8.42(3), p = 0.04), (FEV: χ = 8.26(3), p = 0.04), rank (FVC: χ = 8.52(3), p = 0.04), (FEV: χ = 8.05(3), p = 0.04), duration of services (FVC: χ = 11.0(1), p = 0.04), (FEV: χ = 6.53(1), p = 0.01), and average working hours (with the Measured FVC (litre), r = -3.97, p < 0.001; Measured FEV1 (litre), r = -3.70, p < 0.001; Predicted FVC, r = -0.49, p < 0.001; Predicted FEV1, r = -0.47, p < 0.001; and %Ratio FEV1/FV, r = -0.47, p < 0.001) were significantly related to lung function among traffic police.

    Conclusions: Occupational factors play a crucial role, and hence, the authorities should take action in generating flexible working hours and the duration of services accordingly. The data from this study can help by serving as a reference to the top management of traffic police officers to develop occupational safety and health guideline for police officers to comply with the Occupational Safety and Health Act (OSHA, Act 514 1994).

    Matched MeSH terms: Lung/physiopathology*
  6. Albadr MAA, Tiun S, Ayob M, Al-Dhief FT, Omar K, Hamzah FA
    PLoS One, 2020;15(12):e0242899.
    PMID: 33320858 DOI: 10.1371/journal.pone.0242899
    The coronavirus disease (COVID-19), is an ongoing global pandemic caused by severe acute respiratory syndrome. Chest Computed Tomography (CT) is an effective method for detecting lung illnesses, including COVID-19. However, the CT scan is expensive and time-consuming. Therefore, this work focus on detecting COVID-19 using chest X-ray images because it is widely available, faster, and cheaper than CT scan. Many machine learning approaches such as Deep Learning, Neural Network, and Support Vector Machine; have used X-ray for detecting the COVID-19. Although the performance of those approaches is acceptable in terms of accuracy, however, they require high computational time and more memory space. Therefore, this work employs an Optimised Genetic Algorithm-Extreme Learning Machine (OGA-ELM) with three selection criteria (i.e., random, K-tournament, and roulette wheel) to detect COVID-19 using X-ray images. The most crucial strength factors of the Extreme Learning Machine (ELM) are: (i) high capability of the ELM in avoiding overfitting; (ii) its usability on binary and multi-type classifiers; and (iii) ELM could work as a kernel-based support vector machine with a structure of a neural network. These advantages make the ELM efficient in achieving an excellent learning performance. ELMs have successfully been applied in many domains, including medical domains such as breast cancer detection, pathological brain detection, and ductal carcinoma in situ detection, but not yet tested on detecting COVID-19. Hence, this work aims to identify the effectiveness of employing OGA-ELM in detecting COVID-19 using chest X-ray images. In order to reduce the dimensionality of a histogram oriented gradient features, we use principal component analysis. The performance of OGA-ELM is evaluated on a benchmark dataset containing 188 chest X-ray images with two classes: a healthy and a COVID-19 infected. The experimental result shows that the OGA-ELM achieves 100.00% accuracy with fast computation time. This demonstrates that OGA-ELM is an efficient method for COVID-19 detecting using chest X-ray images.
    Matched MeSH terms: Lung/physiopathology
  7. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Sci Rep, 2021 Nov 18;11(1):22500.
    PMID: 34795360 DOI: 10.1038/s41598-021-01988-8
    Mice have served as an excellent model to understand the etiology of lung cancer for years. However, data regarding dual-stage carcinogenesis of lung squamous cell carcinoma (SCC) remain elusive. Therefore, we aim to develop pre-malignant (PM) and malignant (M) lung SCC in vivo using N-nitroso-tris-chloroethylurea (NTCU). BALB/C mice were allotted into two main groups; PM and M groups which received treatment for 15 and 30 weeks, respectively. Then, the mice in each main group were allotted into three groups; control, vehicle, and cancer (n = 6), which received normal saline, 70% acetone, and 0.04 M NTCU by skin painting, respectively. Histopathologically, we discovered a mix of hyperplasia, metaplasia, and dysplasia lesions in the PM group and intracellular bridge; an SCC feature in the M group. The M group was positive for cytokeratin 5/6 protein which confirmed the lung SCC subtype. We also found significantly higher (P lung SCC in mice model at appropriate weeks and the vehicle group was suggested to be adequate as control group for future research.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/physiopathology*
  8. Subramaniyan V, Fuloria S, Gupta G, Kumar DH, Sekar M, Sathasivam KV, et al.
    Chem Biol Interact, 2022 Jan 05;351:109735.
    PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735
    Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/physiopathology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links