METHODS: HIV-positive patients enrolled in the TREAT Asia HIV Observational Database who had used second-line ART for ≥6 months were included. ART use and rates and predictors of second-line treatment failure were evaluated.
RESULTS: There were 302 eligible patients. Most were male (76.5%) and exposed to HIV via heterosexual contact (71.5%). Median age at second-line initiation was 39.2 years, median CD4 cell count was 146 cells per cubic millimeter, and median HIV viral load was 16,224 copies per milliliter. Patients started second-line ART before 2007 (n = 105), 2007-2010 (n = 147) and after 2010 (n = 50). Ritonavir-boosted lopinavir and atazanavir accounted for the majority of protease inhibitor use after 2006. Median follow-up time on second-line therapy was 2.3 years. The rates of treatment failure and mortality per 100 patient/years were 8.8 (95% confidence interval: 7.1 to 10.9) and 1.1 (95% confidence interval: 0.6 to 1.9), respectively. Older age, high baseline viral load, and use of a protease inhibitor other than lopinavir or atazanavir were associated with a significantly shorter time to second-line failure.
CONCLUSIONS: Increased access to viral load monitoring to facilitate early detection of first-line ART failure and subsequent treatment switch is important for maximizing the durability of second-line therapy in Asia. Although second-line ART is highly effective in the region, the reported rate of failure emphasizes the need for third-line ART in a small portion of patients.
OBJECTIVE: The current study aimed to investigate the potential of MKP as a pharmaceutical against AD by examining MKP's effect on cognitive function and molecular changes in the brain using double transgenic (APP/PS1) mice.
METHODS: Experimental procedures were conducted in APP/PS1 mice (n = 38) with a C57BL/6 background. A novel object recognition test was used to evaluate recognition memory. ELISA was used to measure insoluble Aβ40, Aβ42, and TNF-α levels in brain tissue. Immunohistochemical analysis allowed the assessment of glial cell activation in MKP-treated APP/PS1 mice.
RESULTS: The novel object recognition test revealed that MKP-treated APP/PS1 mice showed significant improvement in recognition memory. ELISA of brain tissue showed that MKP significantly reduced insoluble Aβ40, Aβ42, and TNF-α levels. Immunohistochemical analysis indicated the suppression of the marker for microglia and reactive astrocytes in MKP-treated APP/PS1 mice.
CONCLUSION: Based on these results, we consider that MKP could ameliorate pathological Aβ accumulation-induced cognitive impairment in APP/PS1 mice. Furthermore, our findings suggest that MKP potentially contributes to preventing cognitive decline in AD.