Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Labeda DP, Price NP, Tan GYA, Goodfellow M, Klenk HP
    Int J Syst Evol Microbiol, 2010 Jun;60(Pt 6):1444-1449.
    PMID: 19671714 DOI: 10.1099/ijs.0.016568-0
    The species Amycolatopsis fastidiosa (ex Celmer et al. 1977) Henssen et al. 1987 was proposed, based on morphological and chemotaxonomic observations, for a strain originally described as 'Pseudonocardia fastidiosa' Celmer et al. 1977 in a US patent. In the course of a phylogenetic study of the taxa with validly published names within the suborder Pseudonocardineae based on 16S rRNA gene sequences, it became apparent that this species was misplaced in the genus Amycolatopsis. After careful evaluation of the phylogeny, morphology, chemotaxonomy and physiology of the type strain, it was concluded that this strain represents a species of the genus Actinokineospora that is unable to produce motile spores. The description of the genus Actinokineospora is therefore emended to accommodate species that do not produce motile spores, and it is proposed that Amycolatopsis fastidiosa be transferred to the genus Actinokineospora as Actinokineospora fastidiosa comb. nov. The type strain is NRRL B-16697(T) =ATCC 31181(T) =DSM 43855(T) =JCM 3276(T) =NBRC 14105(T) =VKM Ac-1419(T).
    Matched MeSH terms: Phospholipids/metabolism
  2. Lam MQ, Vodovnik M, Zorec M, Chen SJ, Goh KM, Yahya A, et al.
    Int J Syst Evol Microbiol, 2020 Mar;70(3):1769-1776.
    PMID: 31976852 DOI: 10.1099/ijsem.0.003970
    To date, there is sparse information for the genus Robertkochia with Robertkochia marina CC-AMO-30DT as the only described member. We report here a new species isolated from mangrove soil collected at Malaysia Tanjung Piai National Park and perform polyphasic characterization to determine its taxonomic position. Strain CL23T is a Gram-negative, yellow-pigmented, strictly aerobic, catalase-positive and oxidase-positive bacterium. The optimal growth conditions were determined to be at pH 7.0, 30-37 °C and in 1-2 % (w/v) NaCl. The major respiratory quinone was menaquinone-6 (MK-6) and the highly abundant polar lipids were four unidentified lipids, a phosphatidylethanolamine and two unidentified aminolipids. The 16S rRNA gene similarity between strain CL23T and R. marina CC-AMO-30DT is 96.67 %. Strain CL23T and R. marina CC-AMO-30DT clustered together and were distinguished from taxa of closely related genera in 16S rRNA gene phylogenetic analysis. Genome sequencing revealed that strain CL23T has a genome size of 4.4 Mbp and a G+C content of 40.72 mol%. Overall genome related indexes including digital DNA-DNA hybridization value and average nucleotide identity are 17.70 % and approximately 70%, below the cutoffs of 70 and 95%, respectively, indicated that strain CL23T is a distinct species from R. marina CC-AMO-30DT. Collectively, based on the phenotypic, chemotaxonomic, phylogenetic and genomic evidences presented here, strain CL23T is proposed to represent a new species with the name Robertkochia solimangrovi sp. nov. (KCTC 72252T=LMG 31418T). An emended description of the genus Robertkochia is also proposed.
    Matched MeSH terms: Phospholipids/chemistry
  3. Lau HLN, Tee YS, Chan MK, Teh SS
    J Oleo Sci, 2022;71(2):177-185.
    PMID: 35110462 DOI: 10.5650/jos.ess21256
    Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.
    Matched MeSH terms: Phospholipids/analysis; Phospholipids/isolation & purification*
  4. Lee LH, Azman AS, Zainal N, Eng SK, Mutalib NA, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Oct;64(Pt 10):3513-3519.
    PMID: 25056298 DOI: 10.1099/ijs.0.062414-0
    Strain MUSC 115(T) was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115(T) was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Microbacterium. The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the N-glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C15:0 and anteiso-C17:0. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115(T) showed the highest sequence similarity to Microbacterium immunditiarum SK 18(T) (98.1%), M. ulmi XIL02(T) (97.8%) and M. arborescens DSM 20754(T) (97.5%) and lower sequence similarity to strains of other species of the genus Microbacterium. DNA-DNA hybridization experiments revealed a low level of DNA-DNA relatedness (less than 24%) between strain MUSC 115(T) and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115(T) represented a unique DNA profile. The DNA G+C content determined was 70.9 ± 0.7 mol%, which is lower than that of M. immunditiarum SK 18(T). Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115(T) represents a novel species of the genus Microbacterium, for which the name Microbacterium mangrovi sp. nov. is proposed. The type strain is MUSC 115(T) ( = MCCC 1K00251(T) = DSM 28240(T) = NBRC 110089(T)).
    Matched MeSH terms: Phospholipids/chemistry
  5. Lee LH, Zainal N, Azman AS, Eng SK, Ab Mutalib NS, Yin WF, et al.
    Int J Syst Evol Microbiol, 2014 Sep;64(Pt 9):3297-306.
    PMID: 24994773 DOI: 10.1099/ijs.0.065045-0
    Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species. Strain MUSC 135(T) exhibited a broad-spectrum bacteriocin against the pathogens meticillin-resistant Staphylococcus aureus (MRSA) strain ATCC BAA-44, Salmonella typhi ATCC 19430(T) and Aeromonas hydrophila ATCC 7966(T). A polyphasic approach was used to study the taxonomy of MUSC 135(T), and it showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus Streptomyces. The diamino acid of the cell-wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were MK-9(H6), MK-9(H4) and MK-9(H8). Polar lipids detected were a lipid, an aminolipid, a phospholipid, phosphatidylinositol, phosphatidylethanolamine and two glycolipids. The predominant cellular fatty acids (>10.0 %) were anteiso-C15 : 0 (20.8 %), iso-C16 : 0 (18.0 %), iso-C15 : 0 (12.2 %) and anteiso-C17 : 0 (11.6 %). The whole-cell sugars were ribose, glucose and mannose. These results suggested that MUSC 135(T) should be placed within the genus Streptomyces. Phylogenetic analysis based on the 16S rRNA gene sequence exhibited that the most closely related strains were Streptomyces cinereospinus NBRC 15397(T) (99.18 % similarity), Streptomyces mexicanus NBRC 100915(T) (99.17 %) and Streptomyces coeruleofuscus NBRC 12757(T) (98.97 %). DNA-DNA relatedness between MUSC 135(T) and closely related type strains ranged from 26.3±2.1 to 49.6±2.5 %. BOX-PCR fingerprint comparisons showed that MUSC 135(T) exhibited a unique DNA profile. The DNA G+C content determined was 70.7±0.3 mol%. Based on our polyphasic study of MUSC 135(T), the strain merits assignment to a novel species, for which the name Streptomyces pluripotens sp. nov. is proposed. The type strain is MUSC 135(T) ( = MCCC 1K00252(T) = DSM 42140(T)).
    Matched MeSH terms: Phospholipids/chemistry
  6. Lee LH, Zainal N, Azman AS, Mutalib NA, Hong K, Chan KG
    Int J Syst Evol Microbiol, 2014 May;64(Pt 5):1461-1467.
    PMID: 24449791 DOI: 10.1099/ijs.0.058701-0
    A novel actinobacterial strain, designated MUSC 201T, was isolated from a mangrove soil collected from Kuantan, the capital city of Pahang State in Malaysia. The taxonomic status of this strain was determined using a polyphasic approach. Comparative 16S rRNA gene sequence analysis revealed that strain MUSC 201T represented a novel lineage within the class Actinobacteria. Strain MUSC 201T formed a distinct clade in the family Nocardioidaceae and was most closely related to the members of the genera Nocardioides (16S rRNA gene sequence similarity, 91.9-95.1%), Aeromicrobium (92.7-94.6%), Marmoricola (92.5-93.1%) and Kribbella (91.5-92.4%). The cells of this strain were irregular coccoid to short rod shaped. The peptidoglycan contained ll-diaminopimelic acid as diagnostic diamino acid and the peptidoglycan type was A3γ. The peptidoglycan cell wall contained ll-diaminopimelic acid, glycine, glutamic acid and alanine in a molar ratio of 1.5:0.9:1.0:1.5. The cell-wall sugars were galactose and rhamnose. The predominant menaquinone was MK-9(H4). The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphoglycolipid, glycolipid and four unknown phospholipids. The major cellular fatty acids were C18:1ω9c (30.8%), C16:0 (24.1%), and 10-methyl C18:0 (13.9%). The DNA G+C content was 72.0±0.1 mol%. On the basis of phylogenetic and phenotypic differences from members of the genera of the family Nocardioidaceae, a novel genus and species, Mumia flava gen. nov., sp. nov. are proposed. The type strain of Mumia flava is MUSC 201T (=DSM 27763T=MCCC 1A00646T=NBRC 109973T).
    Matched MeSH terms: Phospholipids/chemistry
  7. Lei J, He Y, Zhu S, Shi J, Tan CP, Liu Y, et al.
    Analyst, 2024 Jan 29;149(3):751-760.
    PMID: 38194259 DOI: 10.1039/d3an01536j
    Polyunsaturated fatty acids (PUFAs), such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in the nutritional value of milk lipids. However, a comprehensive analysis of PUFAs and their esters in milk is still scarce. In this study, we developed a novel pseudotargeted lipidomics approach, named SpecLipIDA, for determining PUFA lipids in milk. Triglycerides (TGs) and phospholipids (PLs) were separated using NH2 cartridges, and mass spectrometry data in the information-dependent acquisition (IDA) mode were preprocessed by MS-DIAL, leading to improved identification in subsequent targeted analysis. The target matching algorithm, based on specific lipid cleavage patterns, demonstrated enhanced identification of PUFA lipids compared to the lipid annotations provided by MS-DIAL and GNPS. The approach was applied to identify PUFA lipids in various milk samples, resulting in the detection of a total of 115 PUFA lipids. The results revealed distinct differences in PUFA lipids among different samples, with 44 PUFA lipids significantly contributing to these differences. Our study indicated that SpecLipIDA is an efficient method for rapidly and specifically screening PUFA lipids.
    Matched MeSH terms: Phospholipids
  8. Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS
    Small, 2018 Nov;14(44):e1802086.
    PMID: 30191658 DOI: 10.1002/smll.201802086
    The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
    Matched MeSH terms: Phospholipids
  9. Li D, Zhang H, Hsu-Hage BH, Wahlqvist ML, Sinclair AJ
    Eur J Clin Nutr, 2001 Dec;55(12):1036-42.
    PMID: 11781668
    The aims of this study were to investigate (1) platelet phospholipid (PL) polyunsaturated fatty acid (PUFA) composition in subjects who were the Melbourne Chinese migrants, compared with those who were the Melbourne Caucasians and (2) the relationship between platelet PL PUFA and intake of fish, meat and PUFA.
    Matched MeSH terms: Phospholipids/blood; Phospholipids/chemistry*
  10. Lye HS, Kato T, Low WY, Taylor TD, Prakash T, Lew LC, et al.
    J Biotechnol, 2017 Sep 19.
    PMID: 28935567 DOI: 10.1016/j.jbiotec.2017.09.007
    In this study, hypercholesterolemic mice fed with Lactobacillus fermentum FTDC 8312 after a seven-week feeding trial showed a reduction in serum total cholesterol (TC) levels, accompanied by a decrease in serum low-density lipoprotein cholesterol (LDL-C) levels, an increase in serum high-density lipoprotein cholesterol (HDL-C) levels, and a decreased ratio of apoB100:apoA1 when compared to those fed with control or a type strain, L. fermentum JCM 1173. These have contributed to a decrease in atherogenic indices (TC/HDL-C) of mice on the FTDC 8312 diet. Serum triglyceride (TG) levels of mice fed with FTDC 8312 and JCM 1173 were comparable to those of the controls. A decreased ratio of cholesterol and phospholipids (C/P) was also observed for mice fed with FTDC 8312, leading to a decreased number of spur red blood cells (RBC) formation in mice. Additionally, there was an increase in fecal TC, TG, and total bile acid levels in mice on FTDC 8312 diet compared to those with JCM 1173 and controls. The administration of FTDC 8312 also altered the gut microbiota population such as an increase in the members of genera Akkermansia and Oscillospira, affecting lipid metabolism and fecal bile excretion in the mice. Overall, we demonstrated that FTDC 8312 exerted a cholesterol lowering effect that may be attributed to gut microbiota modulation.
    Matched MeSH terms: Phospholipids
  11. Madhaiyan M, See-Too WS, Ee R, Saravanan VS, Wirth JS, Alex THH, et al.
    Int J Syst Evol Microbiol, 2020 Apr;70(4):2640-2647.
    PMID: 32202992 DOI: 10.1099/ijsem.0.004084
    A Gram-stain-negative, aerobic, rod-shaped, leaf-associated bacterium, designated JS23T, was isolated from surface-sterilized leaf tissue of an oil palm grown in Singapore and was investigated by polyphasic taxonomy. Phylogenetic analyses based on 16S rRNA gene sequences and 180 conserved genes in the genome of several members of Burkholderiaceae revealed that strain JS23T formed a distinct evolutionary lineage independent of other taxa within the family Burkholderiaceae. The predominant ubiquinone was Q-8. The primary polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified aminophospholipid. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c /C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c /C18 : 1 ω6c). The size of the genome is 5.36 Mbp with a DNA G+C content of 66.2 mol%. Genomic relatedness measurements such as average nucleotide identity, genome-to-genome distance and digital DNA-DNA hybridization clearly distinguished strain JS23T from the closely related genera Burkholderia, Caballeronia, Mycetohabitans, Mycoavidus, Pandoraea, Paraburkholderia, Robbsia and Trinickia. Furthermore, average amino acid identity values and the percentages of conserved proteins, 56.0-68.4 and 28.2-45.5, respectively, were well below threshold values for genus delineation and supported the assignment of JS23T to a novel genus. On the basis of the phylogenetic, biochemical, chemotaxonomic and phylogenomic evidence, strain JS23T is proposed to represent a novel species of a new genus within the family Burkholderiaceae, for which the name Chitinasiproducens palmae gen. nov., sp. nov., is proposed with the type strain of JS23T (= DSM 27307T=KACC 17592T).
    Matched MeSH terms: Phospholipids/chemistry
  12. Mahmood S, Taher M, Mandal UK
    Int J Nanomedicine, 2014;9:4331-46.
    PMID: 25246789 DOI: 10.2147/IJN.S65408
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
    Matched MeSH terms: Phospholipids
  13. Matejcic M, Lesueur F, Biessy C, Renault AL, Mebirouk N, Yammine S, et al.
    Int J Cancer, 2018 Nov 15;143(10):2437-2448.
    PMID: 30110135 DOI: 10.1002/ijc.31797
    There are both limited and conflicting data on the role of dietary fat and specific fatty acids in the development of pancreatic cancer. In this study, we investigated the association between plasma phospholipid fatty acids and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The fatty acid composition was measured by gas chromatography in plasma samples collected at recruitment from375 incident pancreatic cancer cases and375 matched controls. Associations of specific fatty acids with pancreatic cancer risk were evaluated using multivariable conditional logistic regression models with adjustment for established pancreatic cancer risk factors. Statistically significant inverse associations were found between pancreatic cancer incidence and levels of heptadecanoic acid (ORT3-T1 [odds ratio for highest versus lowest tertile] =0.63; 95%CI[confidence interval] = 0.41-0.98; ptrend = 0.036), n-3 polyunsaturated α-linolenic acid (ORT3-T1 = 0.60; 95%CI = 0.39-0.92; ptrend = 0.02) and docosapentaenoic acid (ORT3-T1 = 0.52; 95%CI = 0.32-0.85; ptrend = 0.008). Industrial trans-fatty acids were positively associated with pancreatic cancer risk among men (ORT3-T1 = 3.00; 95%CI = 1.13-7.99; ptrend = 0.029), while conjugated linoleic acids were inversely related to pancreatic cancer among women only (ORT3-T1 = 0.37; 95%CI = 0.17-0.81; ptrend = 0.008). Among current smokers, the long-chain n-6/n-3 polyunsaturated fatty acids ratio was positively associated with pancreatic cancer risk (ORT3-T1 = 3.40; 95%CI = 1.39-8.34; ptrend = 0.007). Results were robust to a range of sensitivity analyses. Our findings suggest that higher circulating levels of saturated fatty acids with an odd number of carbon atoms and n-3 polyunsaturated fatty acids may be related to lower risk of pancreatic cancer. The influence of some fatty acids on the development of pancreatic cancer may be sex-specific and modulated by smoking.
    Matched MeSH terms: Phospholipids/blood*
  14. McJarrow P, Radwan H, Ma L, MacGibbon AKH, Hashim M, Hasan H, et al.
    Nutrients, 2019 Oct 08;11(10).
    PMID: 31597293 DOI: 10.3390/nu11102400
    Human milk oligosaccharides (HMOs), phospholipids (PLs), and gangliosides (GAs) are components of human breast milk that play important roles in the development of the rapidly growing infant. The differences in these components in human milk from the United Arab Emirates (UAE) were studied in a cross-sectional trial. High-performance liquid chromatography‒mass spectrometry was used to determine HMO, PL, and GA concentrations in transitional (5-15 days) and mature (at 6 months post-partum) breast milk of mothers of the United Arab Emirates (UAE). The results showed that the average HMO (12 species), PL (7 species), and GA (2 species) concentrations quantified in the UAE mothers' transitional milk samples were (in mg/L) 8204 ± 2389, 269 ± 89, and 21.18 ± 11.46, respectively, while in mature milk, the respective concentrations were (in mg/L) 3905 ± 1466, 220 ± 85, and 20.18 ± 9.75. The individual HMO concentrations measured in this study were all significantly higher in transitional milk than in mature milk, except for 3 fucosyllactose, which was higher in mature milk. In this study, secretor and non-secretor phenotype mothers showed no significant difference in the total HMO concentration. For the PL and GA components, changes in the individual PL and GA species distribution was observed between transitional milk and mature milk. However, the changes were within the ranges found in human milk from other regions.
    Matched MeSH terms: Phospholipids/analysis*
  15. Mian S, Ishak SD, Noordin NM, Kader MA, Abduh YM, Khatoon H, et al.
    Data Brief, 2020 Apr;29:105287.
    PMID: 32123713 DOI: 10.1016/j.dib.2020.105287
    The data collection was initiated to evaluate the effects of supplementary phospholipid to non-fishmeal based diet in order to make functional diets for the Malaysian Mahseer, Tor tambroides. Four iso-nitrogenous and iso-lipidic diets were formulated to consist 100% fishmeal (FM100), 0% fishmeal or full fishmeal replacement (FM0), and 0% fishmeal supplemented with 4% phospholipids (FM0+4%PL), 6% phospholipids (FM0+6%PL). A 60-day feeding trial was conducted and data collection was carried out for the following parameters; growth indices, somatic parameters, whole body nutrient composition, muscle fatty acid composition, haematocrit value and serum lysozyme activity. Fish fed FM0 diets showed significantly poor performance (P 
    Matched MeSH terms: Phospholipids
  16. Moh TH, Furusawa G, Amirul AA
    Int J Syst Evol Microbiol, 2017 Oct;67(10):4089-4094.
    PMID: 28905698 DOI: 10.1099/ijsem.0.002258
    A novel, rod-shaped, Gram-stain-negative, halophilic and non-motile bacterium, designated CCB-MM1T, was isolated from a sample of estuarine sediment collected from Matang Mangrove Forest, Malaysia. The cells possessed a rod-coccus cell cycle in association with growth phase and formed aggregates. Strain CCB-MM1T was both catalase and oxidase positive, and able to degrade starch. Optimum growth occurred at 30 °C and pH 7.0 in the presence of 2-3 % (w/v) NaCl. The 16S rRNA gene sequence of strain CCB-MM1T showed 98.12, 97.46 and 97.33 % sequence similarity with Microbulbifer rhizosphaerae Cs16bT, Microbulbifer maritimus TF-17T and Microbulbifergwangyangensis GY2T respectively. Strain CCB-MM1T and M. rhizosphaerae Cs16bT formed a cluster in the phylogenetic tree. The major cellular fatty acids were iso-C17 : 1 ω9c and iso-C15 : 0, and the total polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphoaminolipid, two unidentified lipids, an unidentified glycolipid and an unidentified aminolipid. The major respiratory quinone was ubiquinone Q-8 and the genomic DNA G+C content of the strain was 58.9 mol%. On the basis of the phylogenetic, phenotypic and genotypic data presented here, strain CCB-MM1T represents a novel species of the genus Microbulbifer, for which the name Microbulbiferaggregans sp. nov. is proposed. The type strain is CCB-MM1T (=LMG 29920T=JCM 31875T).
    Matched MeSH terms: Phospholipids/chemistry
  17. Mohd Nor MN, Sabaratnam V, Tan GYA
    Int J Syst Evol Microbiol, 2017 Apr;67(4):851-855.
    PMID: 27902276 DOI: 10.1099/ijsem.0.001683
    A bacterial isolate, designated strain S37T, was isolated from the rhizosphere of oil palm (Elaeis guineensis). Strain S37T was found to be Gram-stain-negative, aerobic, motile and rod shaped. Based on 16S rRNA gene sequence analysis, strain S37T was most closely related to Devosia albogilva IPL15T (97.3 %), Devosia chinhatensis IPL18T (96.8 %) and Devosia subaequoris HST3-14T (96.5 %). The G+C content of the genomic DNA was 63.0 mol%, and dominant cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), 11-methyl C18 : 1ω7c and C16 : 0. The predominant isoprenoid quinone was ubiquinone-10 (Q-10), and the major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, glycolipid and phospholipids. Based on the polyphasic taxonomic data, it is clear that strain S37T represents a novel species of the genus Devosia within the family Hyphomicrobiaceae, for which we propose the name Devosia elaeis sp. nov., with strain S37T (=TBRC 5145T=LMG 29420T) as the type strain.
    Matched MeSH terms: Phospholipids/chemistry
  18. Moroi K, Sato T
    Biochem Pharmacol, 1975 Aug 15;24(16):1517-21.
    PMID: 8
    Matched MeSH terms: Phospholipids/metabolism
  19. Nojiri K, Higurashi S, Takahashi T, Tsujimori Y, Kobayashi S, Toba Y, et al.
    BMJ Open, 2021 Dec 30;11(12):e055028.
    PMID: 36282635 DOI: 10.1136/bmjopen-2021-055028
    PURPOSE: The Japanese Human Milk Study, a longitudinal prospective cohort study, was set up to clarify how maternal health, nutritional status, lifestyle and sociodemographic and economic factors affect breastfeeding practices and human milk composition. This would eventually determine factors affecting the growth and development of infants and children.

    PARTICIPANTS: A total of 1210 Japanese lactating women who satisfied the inclusion criteria, were invited across the country at various participating sites, between 2014 and 2019. Finally a total of 1122 women were enrolled in this study.

    FINDINGS TO DATE: Among 1122 eligible participants, mean age at delivery was 31.2 (SD 4.4) years and mean prepregnancy BMI was 20.8 (SD 2.7). Among these women, 35% were previously nulliparous and 77.7% had college, university or higher education. The mean gestational period was 39.0 (SD 1.3) weeks. Caesarean section was reported among 11.9%; mean infant birth weight was 3082 (SD 360) g. Of the infants, 53.7% were male. Overall, our participants appeared to be healthier than the general population in Japan. Analyses of the 1079 eligible human milk samples obtained at the first and second months postpartum showed the following composition: carbohydrate, 8.13 (SD 0.32) g/100 mL; fat, 3.77 (SD 1.29) g/100 mL; and crude protein, 1.20 (SD 0.23) g/100 mL. We also analysed osteopontin, fatty acid, vitamin D and phospholipid levels in limited subcohorts of the samples.

    FUTURE PLANS: Follow-up surveys will be conducted to obtain milk samples every 2 months for 12 months and to investigate mother and child health until the children reach 5 years of age. These will be completed in 2024. We plan to longitudinally analyse the composition of macronutrients and various bioactive factors in human milk and investigate the lifestyle and environmental factors that influence breastfeeding practices, maternal and child health, and child development.

    TRIAL REGISTRATION NUMBER: UMIN000015494; pre-results.

    Matched MeSH terms: Phospholipids/metabolism
  20. Ong KK, Fakhru'l-Razi A, Baharin BS, Hassan MA
    PMID: 10595436
    The application of membrane separation in palm oil refining process has potential for energy and cost savings. The conventional refining of crude palm oil results in loss of oil and a contaminated effluent. Degumming of crude palm oil by membrane technology is conducted in this study. The objective of this research is to study the feasibility of membrane filtration for the removal of phospholipids in the degumming of crude palm oil, including analyses of phosphorus content, carotene content free fatty acids (as palmitic acid), colour and volatile matter. A PCI membrane module was used which was equipped with polyethersulfone membranes having a molecular weight cut off of 9,000 (type ES209). In this study, phosphorus content was the most important parameter monitored. The membrane effectively removed phospholipids resulting in a permeate with a phosphorus content of less than 0.3 ppm The percentage removal of phosphorus was 96.4% and was considered as a good removal. Lovibond colour was reduced from 27R 50Y to 20R 30Y. The percentage removal of carotene was 15.8%. The removal of colour was considered good but the removal of carotene was considered insignificant by the membrane. Free fatty acids and volatile matter were not removed. Typical of membrane operations, the permeate flux decreased with time and must be improved in order to be adopted on an industrial scale. Membrane technology was found to have good potential in crude palm oil degumming. However, an appropriate method has to be developed to clean the membranes for reuse.
    Matched MeSH terms: Phospholipids
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links