Displaying publications 21 - 40 of 127 in total

Abstract:
Sort:
  1. Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, et al.
    Microorganisms, 2019 Oct 16;7(10).
    PMID: 31623251 DOI: 10.3390/microorganisms7100464
    Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.
    Matched MeSH terms: Phylogeography
  2. Seri Masran SNA, Ab Majid AH
    J Med Entomol, 2019 06 27;56(4):942-952.
    PMID: 30882146 DOI: 10.1093/jme/tjz024
    The surge in tropical bed bug Cimex hemipterus (Fabricius) (Hemiptera: Cimicidae) infestations has led to an increase in genomic studies. In this study, the population genetics and breeding patterns of 22 Malaysian populations were analyzed, including genetic differentiation and genetic distance. For seven microsatellite loci, the number of alleles varied from 6 to 14. The allelels per loci contrasted sharply between the overall population and within the populations. The average observed and expected heterozygosity was 0.280 and 0.828 for the overall population and 0.281 and 0.657 among the populations, respectively. Based on polymorphic information criteria, the markers with a value >0.5 were highly polymorphic. In the Hardy-Weinberg equilibrium, the loci of Ch 09ttn, Ch 01dn, and Ch 13dn of the overall population showed signs of a null allele. The stutter peaks caused no scoring errors; large allele dropouts were not detected for any loci; and a correlation imbalance was not indicated. The genetic differentiation among populations was moderate, with a coefficient of genetic differentiation (FST) of 0.144. The bed bug populations showed strong inbreeding, with highly positive coefficients of inbreeding (FIS). The molecular variation attributed to inbreeding was 83% within the populations, compared with 17% among the populations. The admixture individuals in STRUCTURE and neighbor-joining phylogenetic trees also indicated weak genetic structure in the geographical populations, suggesting moderate gene flows between populations. Thus, moderately active dispersion and human-mediated transport shaped the genetic structure of C. hemipterus populations in Malaysia.
    Matched MeSH terms: Phylogeography
  3. Ribas A, Wells K, Morand S, Chaisiri K, Agatsuma T, Lakim MB, et al.
    Parasitol Int, 2020 Aug;77:102128.
    PMID: 32330535 DOI: 10.1016/j.parint.2020.102128
    The whipworm Trichuris muris is known to be associated with various rodent species in the northern hemisphere, but the species identity of whipworm infecting rodents in the Oriental region remains largely unknown. We collected Trichuris of Muridae rodents in mainland and insular Southeast Asia between 2008 and 2015 and used molecular and morphological approaches to identify the systematic position of new specimens. We discovered two new species that were clearly distinct from T. muris, both in terms of molecular phylogenetic clustering and morphological features, with one species found in Thailand and another one in Borneo. We named the new species from Thailand as Trichuris cossoni and the species from Borneo as Trichuris arrizabalagai. Molecular phylogeny using internal transcribed spacer region (ITS1-5.8S-ITS2) showed a divergence between T. arrizabalagai n. sp., T. cossoni n. sp. and T. muris. Our findings of phylogeographically distinct Trichuris species despite some globally distributed host species requires further research into the distribution of different species, previously assumed to belong to T. muris, which has particular relevance for using these species as laboratory model organisms.
    Matched MeSH terms: Phylogeography
  4. Lim HC, Habib A, Chen WJ
    Genes (Basel), 2021 11 29;12(12).
    PMID: 34946874 DOI: 10.3390/genes12121926
    A broad-scale comparative phylogeographic and phylogenetic study of pennah croakers, mainly Pennahia anea, P. macrocephalus, and P. ovata was conducted to elucidate the mechanisms that may have driven the diversification of marine organisms in Southeast Asian waters. A total of 316 individuals from the three species, and an additional eight and six individuals of P. argentata and P. pawak were employed in this study. Two genetically divergent lineages each of P. argentata and P. anea (lineages L1 and L2) were respectively detected from the analyses based on mitochondrial cytochrome b gene data. Historical biogeography analysis with a multi-gene dataset revealed that Pennahia species most likely originated in the South China Sea and expanded into the eastern Indian Ocean, East China Sea, and northwestern Pacific Ocean through three separate range expansions. The main diversifications of Pennahia species occurred during Miocene and Pliocene periods, and the occurrences of lineage divergences within P. anea and P. argentata were during the Pleistocene, likely as a consequence of cyclical glaciations. The population expansions that occurred after the sea level rise might be the reason for the population homogeneity observed in P. macrocephalus and most P. anea L2 South China Sea populations. The structure observed between the two populations of P. ovata, and the restricted distributions of P. anea lineage L1 and P. ovata in the eastern Indian Ocean, might have been hampered by the northward flowing ocean current at the Malacca Strait and by the distribution of coral reefs or rocky bottoms. While our results support S. Ekman's center-of-origin hypothesis taking place in the South China Sea, the Malacca Strait serving as the center of overlap is a supplementary postulation for explaining the present-day high diversity of pennah croakers centered in these waters.
    Matched MeSH terms: Phylogeography
  5. Flury JM, Haas A, Brown RM, Das I, Pui YM, Boon-Hee K, et al.
    Mol Phylogenet Evol, 2021 10;163:107210.
    PMID: 34029720 DOI: 10.1016/j.ympev.2021.107210
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world's so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace's Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition.
    Matched MeSH terms: Phylogeography
  6. Norhazrina N, Vanderpoorten A, Hedenäs L, Patiño J
    Mol Phylogenet Evol, 2016 12;105:139-145.
    PMID: 27530707 DOI: 10.1016/j.ympev.2016.08.008
    As opposed to angiosperms, moss species richness is similar among tropical regions of the world, in line with the hypothesis that tropical bryophytes are extremely good dispersers. Here, we reconstructed the phylogeny of the pantropical moss genus Pelekium to test the hypothesis that high migration rates erase any difference in species richness among tropical regions. In contrast with this hypothesis, several species considered to have a pantropical range were resolved as a complex of species with a strong geographic structure. Consequently, a significant phylogeographical signal was found in the data, evidencing that cladogenetic diversification within regions takes place at a faster rate than intercontinental migration. The shape of the Pelekium phylogeny, along with the selection of a constant-rate model of diversification among species in the genus, suggests, however, that the cladogenetic speciation patterns observed in Pelekium are not comparable to some of the spectacular examples of tropical radiations reported in angiosperms. Rather, the results presented here point to the constant accumulation of diversity through time in Pelekium. This, combined with evidence for long-distance dispersal limitations in the genus, suggests that the similar patterns of species richness among tropical areas are better explained in terms of comparable rates of diversification across tropical regions than by the homogenization of species richness by recurrent migrations.
    Matched MeSH terms: Phylogeography
  7. Kikuchi F, Aoki K, Ohdachi SD, Tsuchiya K, Motokawa M, Jogahara T, et al.
    PMID: 32974220 DOI: 10.3389/fcimb.2020.00438
    Murid and cricetid rodents were previously believed to be the principal reservoir hosts of hantaviruses. Recently, however, multiple newfound hantaviruses have been discovered in shrews, moles, and bats, suggesting a complex evolutionary history. Little is known about the genetic diversity and geographic distribution of the prototype shrew-borne hantavirus, Thottapalayam thottimvirus (TPMV), carried by the Asian house shrew (Suncus murinus), which is widespread in Asia, Africa, and the Middle East. Comparison of TPMV genomic sequences from two Asian house shrews captured in Myanmar and Pakistan with TPMV strains in GenBank revealed that the Myanmar TPMV strain (H2763) was closely related to the prototype TPMV strain (VRC66412) from India. In the L-segment tree, on the other hand, the Pakistan TPMV strain (PK3629) appeared to be the most divergent, followed by TPMV strains from Nepal, then the Indian-Myanmar strains, and finally TPMV strains from China. The Myanmar strain of TPMV showed sequence similarity of 79.3-96.1% at the nucleotide level, but the deduced amino acid sequences showed a high degree of conservation of more than 94% with TPMV strains from Nepal, India, Pakistan, and China. Cophylogenetic analysis of host cytochrome b and TPMV strains suggested that the Pakistan TPMV strain was mismatched. Phylogenetic trees, based on host cytochrome b and cytochrome c oxidase subunit I genes of mitochondrial DNA, and on host recombination activating gene 1 of nuclear DNA, suggested that the Asian house shrew and Asian highland shrew (Suncus montanus) comprised a species complex. Overall, the geographic-specific clustering of TPMV strains in Asian countries suggested local host-specific adaptation. Additional in-depth studies are warranted to ascertain if TPMV originated in Asian house shrews on the Indian subcontinent.
    Matched MeSH terms: Phylogeography
  8. Fam YQ, Jamaluddin JAF, Muhammad-Rasul AH, Ilham-Norhakim ML, Rosely NFN, Lavoué S
    J Fish Biol, 2024 Jan;104(1):171-183.
    PMID: 37775959 DOI: 10.1111/jfb.15572
    The variability in the stenotopic miniature rasborine Boraras maculatus (Cypriniformes: Danionidae: Rasborinae) across acidic-water habitats of Peninsular Malaysia (PM) was investigated using two molecular markers (the mitochondrial cytochrome c oxidase subunit I [COI] gene and the nuclear rhodopsin gene), as well as morphological evidence. Molecular phylogenetic analyses revealed differentiation among populations of B. maculatus in PM with the distinction of four allopatric lineages. Each of them was recognized as a putative species by automatic species delimitation methods. These lineages diverged from each other between 7.4 and 1.9 million years ago. A principal component analysis (PCA) was conducted to examine the multivariate variation in 11 morphometric measurements among three of these lineages. PCA results showed a significant overlap in morphological characteristics among these lineages. Additionally, a photograph-based machine learning approach failed to fully differentiate these lineages, suggesting limited morphological differentiation. B. maculatus represents a case of morphological stasis in a stenotopic miniature species. Strong habitat preference, coupled with long-term habitat fragmentation, may explain why each lineage of B. maculatus has a restricted distribution and did not disperse to other regions within and outside of PM, despite ample possibilities when the Sunda shelf was emerged and drained by large paleodrainages for most of the past 7 million years. The conservation status of B. maculatus and its peat swamp habitats are discussed, and it is concluded that peat swamps comprise several evolutionary units. Each of these units is considered a conservation unit and deserves appropriate protection.
    Matched MeSH terms: Phylogeography
  9. Ng PK, Lin SM, Lim PE, Hurtado AQ, Phang SM, Yow YY, et al.
    PLoS One, 2017;12(7):e0182176.
    PMID: 28759629 DOI: 10.1371/journal.pone.0182176
    Many studies classifying Gracilaria species for the exploitation of agarophytes and the development of the agar industry were conducted before the prevalence of molecular tools, resulting in the description of many species based solely on their morphology. Gracilaria firma and G. changii are among the commercially important agarophytes from the western Pacific; both feature branches with basal constrictions that taper toward acute apices. In this study, we contrasted the morpho-anatomical circumscriptions of the two traditionally described species with molecular data from samples that included representatives of G. changii collected from its type locality. Concerted molecular analyses using the rbcL and cox1 gene sequences, coupled with morphological observations of the collections from the western Pacific, revealed no inherent differences to support the treatment of the two entities as distinct taxa. We propose merging G. changii (a later synonym) into G. firma and recognize G. firma based on thallus branches with abrupt basal constrictions that gradually taper toward acute (or sometimes broken) apices, cystocarps consisting of small gonimoblast cells and inconspicuous multinucleate tubular nutritive cells issuing from gonimoblasts extending into the inner pericarp at the cystocarp floor, as well as deep spermatangial conceptacles of the verrucosa-type. The validation of specimens under different names as a single genetic species is useful to allow communication and knowledge transfer among groups from different fields. This study also revealed considerably low number of haplotypes and nucleotide diversity with apparent phylogeographic patterns for G. firma in the region. Populations from the Philippines and Taiwan were divergent from each other as well as from the populations from Malaysia, Thailand, Singapore and Vietnam. Establishment of baseline data on the genetic diversity of this commercially important agarophyte is relevant in the context of cultivation, as limited genetic diversity may jeopardize the potential for its genetic improvement over time.
    Matched MeSH terms: Phylogeography
  10. Sudheer Pamidimarri DV, Reddy MP
    Mol Biol Rep, 2014 May;41(5):3225-34.
    PMID: 24469734 DOI: 10.1007/s11033-014-3185-7
    Jatropha curcas L. (Euphorbiaceae) has acquired a great importance as a renewable source of energy with a number of environmental benefits. Very few attempts were made to understand the extent of genetic diversity and its distribution. This study was aimed to study the diversity and deduce the phylogeography of Jatropha curcas L. which is said to be the most primitive species of the genus Jatropha. Here we studied the intraspecific genetic diversity of the species distributed in different parts of the globe. The study also focused to understand the molecular diversity at reported probable center of origin (Mexico), and to reveal the dispersal route to other regions based on random amplified polymorphic DNA, amplified fragment length polymorphism and nrDNA-ITS sequences data. The overall genetic diversity of J. curcas found in the present study was narrow. The highest genetic diversity was observed in the germplasm collected from Mexico and supports the earlier hypothesis based on morphological data and natural distribution, it is the center for origin of the species. Least genetic diversity found in the Indian germplasm and clustering results revealed that the species was introduced simultaneously by two distinct germplasm and subsequently distributed in different parts of India. The present molecular data further revealed that J. curcas might have spread from the center of the origin to Cape Verde, than to Spain, Portuguese to other neighboring countries and simultaneously to Africa. The molecular evidence supports the Burkill et al. (A dictionary of the economic products of the Malay Peninsula, Governments of Malaysia and Singapore by the Ministry of Agriculture and Co-operatives. Kuala Lumpur, Malaysia, 1966) view of Portuguese might have introduced the species to India. The clustering pattern suggests that the distribution was interfered by human activity.
    Matched MeSH terms: Phylogeography*
  11. Ohtani M, Kondo T, Tani N, Ueno S, Lee LS, Ng KK, et al.
    Mol Ecol, 2013 Apr;22(8):2264-79.
    PMID: 23432376 DOI: 10.1111/mec.12243
    Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
    Matched MeSH terms: Phylogeography*
  12. Shabanzadeh P, Yusof R
    Comput Math Methods Med, 2015;2015:802754.
    PMID: 26336509 DOI: 10.1155/2015/802754
    Unsupervised data classification (or clustering) analysis is one of the most useful tools and a descriptive task in data mining that seeks to classify homogeneous groups of objects based on similarity and is used in many medical disciplines and various applications. In general, there is no single algorithm that is suitable for all types of data, conditions, and applications. Each algorithm has its own advantages, limitations, and deficiencies. Hence, research for novel and effective approaches for unsupervised data classification is still active. In this paper a heuristic algorithm, Biogeography-Based Optimization (BBO) algorithm, was adapted for data clustering problems by modifying the main operators of BBO algorithm, which is inspired from the natural biogeography distribution of different species. Similar to other population-based algorithms, BBO algorithm starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. To evaluate the performance of the proposed algorithm assessment was carried on six medical and real life datasets and was compared with eight well known and recent unsupervised data classification algorithms. Numerical results demonstrate that the proposed evolutionary optimization algorithm is efficient for unsupervised data classification.
    Matched MeSH terms: Phylogeography/statistics & numerical data
  13. Loh KH, Shao KT, Chen HM, Chen CH, Chong VC, Loo PL, et al.
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4230-4231.
    PMID: 26000942
    In this study, the complete mitogenome sequence of the Zebra moray, Gymnomuraena zebra (Anguilliformes: Muraenidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consisting of 16,576 bp includes 13 protein coding genes, 22 transfer RNAs, and two ribosomal RNAs genes. The overall base composition of Zebra moray is 30.2% for A, 26.8% for C, 17.2% for G, and 25.8% for T and show 80% identities to Kidako moray, Gymnothorax kidako. The complete mitogenome of the Zebra moray provides an essential and important DNA molecular data for further phylogeography and evolutionary analysis for moray eel phylogeny.
    Matched MeSH terms: Phylogeography/methods
  14. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, et al.
    Nature, 2015 Aug 20;524(7565):347-50.
    PMID: 26266979 DOI: 10.1038/nature14949
    Tropical mountains are hot spots of biodiversity and endemism, but the evolutionary origins of their unique biotas are poorly understood. In varying degrees, local and regional extinction, long-distance colonization, and local recruitment may all contribute to the exceptional character of these communities. Also, it is debated whether mountain endemics mostly originate from local lowland taxa, or from lineages that reach the mountain by long-range dispersal from cool localities elsewhere. Here we investigate the evolutionary routes to endemism by sampling an entire tropical mountain biota on the 4,095-metre-high Mount Kinabalu in Sabah, East Malaysia. We discover that most of its unique biodiversity is younger than the mountain itself (6 million years), and comprises a mix of immigrant pre-adapted lineages and descendants from local lowland ancestors, although substantial shifts from lower to higher vegetation zones in this latter group were rare. These insights could improve forecasts of the likelihood of extinction and 'evolutionary rescue' in montane biodiversity hot spots under climate change scenarios.
    Matched MeSH terms: Phylogeography*
  15. Mason VC, Helgen KM, Murphy WJ
    J Hered, 2019 03 05;110(2):158-172.
    PMID: 30247638 DOI: 10.1093/jhered/esy046
    The evolutionary history of the colugo, a gliding arboreal mammal distributed throughout Sundaland, was influenced by the location of and connections between forest habitats. By comparing colugo phylogenetic patterns, species ecology, sample distributions, and times of divergence to those of other Sundaic taxa with different life-history traits and dispersal capabilities, we inferred the probable distribution of paleo-forest corridors and their influence on observed biogeographic patterns. We identified a consistent pattern of early diversification between east and west Bornean lineages in colugos, lesser mouse deer, and Sunda pangolins, but not in greater mouse deer. This deep east-west split within Borneo has not been commonly described in mammals. Colugos on West Borneo diverged from colugos in Peninsular Malaysia and Sumatra in the late Pliocene, however most other mammalian populations distributed across these same geographic regions diverged from a common ancestor more recently in the Pleistocene. Low genetic divergence between colugos on large landmasses and their neighboring satellite islands indicated that past forest distributions were recently much larger than present refugial distributions. Our analysis of colugo evolutionary history reconstructs Borneo as the most likely ancestral area of origin for Sunda colugos, and suggests that forests present during the middle Pliocene within the Sunda Shelf were more evergreen and contiguous, while forests were more fragmented, transient, seasonal, or with lower density canopies in the Pleistocene.
    Matched MeSH terms: Phylogeography*
  16. Saito A, Kono K, Nomaguchi M, Yasutomi Y, Adachi A, Shioda T, et al.
    J Gen Virol, 2012 Mar;93(Pt 3):594-602.
    PMID: 22113010 DOI: 10.1099/vir.0.038075-0
    The antiretroviral factor tripartite motif protein 5 (TRIM5) gene-derived isoform (TRIMCyp) has been found in at least three species of Old World monkey: rhesus (Macaca mulatta), pig-tailed (Macaca nemestrina) and cynomolgus (Macaca fascicularis) macaques. Although the frequency of TRIMCyp has been well studied in rhesus and pig-tailed macaques, the frequency and prevalence of TRIMCyp in cynomolgus macaques remain to be definitively elucidated. Here, the geographical and genetic diversity of TRIM5α/TRIMCyp in cynomolgus macaques was studied in comparison with their anti-lentiviral activity. It was found that the frequency of TRIMCyp in a population in the Philippines was significantly higher than those in Indonesian and Malaysian populations. Major and minor haplotypes of cynomolgus macaque TRIMCyp with single nucleotide polymorphisms in the cyclophilin A domain were also found. The functional significance of the polymorphism in TRIMCyp was examined, and it was demonstrated that the major haplotype of TRIMCyp suppressed human immunodeficiency virus type 1 (HIV-1) but not HIV-2, whilst the minor haplotype of TRIMCyp suppressed HIV-2 but not HIV-1. The major haplotype of TRIMCyp did not restrict a monkey-tropic HIV-1 clone, NL-DT5R, which contains a capsid with the simian immunodeficiency virus-derived loop between α-helices 4 and 5 and the entire vif gene. These results indicate that polymorphisms of TRIMCyp affect its anti-lentiviral activity. Overall, the results of this study will help our understanding of the genetic background of cynomolgus macaque TRIMCyp, as well as the host factors composing species barriers of primate lentiviruses.
    Matched MeSH terms: Phylogeography*
  17. Chen CD, Nazni WA, Lee HL, Hashim R, Abdullah NA, Ramli R, et al.
    Trop Biomed, 2014 Jun;31(2):381-6.
    PMID: 25134909 MyJurnal
    This study reported the ant species that were recovered from monkey carcasses in three different ecological habitats in Malaysia. The study was conducted from 9 May - 10 October 2007, 6 May - 6 August 2008 and 26 May - 14 July 2009 in forested area (Gombak, Selangor), coastal area (Tanjong Sepat, Selangor) and highland area (Bukit Cincin, Pahang), respectively. Monkey carcass was used as a model for human decomposition in this study. A total of 4 replicates were used in each of the study sites. Ants were observed to prey on eggs, larvae, pupae and newly emerged flies. This study found that ant species could be found at all stages of decomposition, indicating that ants were not a significant indicator for faunal succession. However, different species of ants were obtained from monkey carcasses placed in different ecological habitats. Cardiocondyla sp. was only found on carcasses placed in the coastal area; while Pheidole longipes, Hypoponera sp. and Pachycondyla sp. were solely found on carcasses placed in the highland area. On the other hand, Pheidologeton diversus and Paratrechina longicornis were found in several ecological habitats. These data suggests that specific ant species can act as geographic indicators for different ecological habitats in forensic entomology cases in Malaysia.
    Matched MeSH terms: Phylogeography*
  18. Dai X, Mak YL, Lu CK, Mei HH, Wu JJ, Lee WH, et al.
    Harmful Algae, 2017 07;67:107-118.
    PMID: 28755713 DOI: 10.1016/j.hal.2017.07.002
    Recent molecular phylogenetic studies of Gambierdiscus species flagged several new species and genotypes, thus leading to revitalizing its systematics. The inter-relationships of clades revealed by the primary sequence information of nuclear ribosomal genes (rDNA), however, can sometimes be equivocal, and therefore, in this study, the taxonomic status of a ribotype, Gambierdiscus sp. type 6, was evaluated using specimens collected from the original locality, Marakei Island, Republic of Kiribati; and specimens found in Rawa Island, Peninsular Malaysia, were further used for comparison. Morphologically, the ribotype cells resembled G. scabrosus, G. belizeanus, G. balechii, G. cheloniae and G. lapillus in thecal ornamentation, where the thecal surfaces are reticulate-foveated, but differed from G. scabrosus by its hatchet-shaped Plate 2', and G. belizeanus by the asymmetrical Plate 3'. To identify the phylogenetic relationship of this ribotype, a large dataset of the large subunit (LSU) and small subunit (SSU) rDNAs were compiled, and performed comprehensive analyses, using Bayesian-inference, maximum-parsimony, and maximum-likelihood, for the latter two incorporating the sequence-structure information of the SSU rDNA. Both the LSU and SSU rDNA phylogenetic trees displayed an identical topology and supported the hypothesis that the relationship between Gambierdiscus sp. type 6 and G. balechii was monophyletic. As a result, the taxonomic status of Gambierdiscus sp. type 6 was revised, and assigned as Gambierdiscus balechii. Toxicity analysis using neuroblastoma N2A assay confirmed that the Central Pacific strains were toxic, ranging from 1.1 to 19.9 fg P-CTX-1 eq cell-1, but no toxicity was detected in a Western Pacific strain. This suggested that the species might be one of the species contributing to the high incidence rate of ciguatera fish poisoning in Marakei Island.
    Matched MeSH terms: Phylogeography*
  19. Davis HR, Chan KO, Das I, Brennan IG, Karin BR, Jackman TR, et al.
    Mol Phylogenet Evol, 2020 06;147:106785.
    PMID: 32135306 DOI: 10.1016/j.ympev.2020.106785
    The gekkonid genus Cyrtodactylus is a highly diverse group of lizards (280 + species), which covers an expansive geographic range. Although this genus has been the focus of many taxonomic and molecular systematic studies, species on the Southeast Asian island of Borneo have remained understudied, leading to an unclear evolutionary history with cascading effects on taxonomy and biogeographic inferences. We assembled the most comprehensive multilocus Bornean dataset (one mitochondrial and three nuclear loci) that included 129 novel sequences and representatives from each known Cyrtodactylus species on the island to validate taxonomic status, assess species diversity, and elucidate biogeographic patterns. Our results uncovered a high proportion of cryptic diversity and revealed numerous taxonomic complications, especially within the C. consobrinus, C. malayanus, and C. pubisulcus groups. Comparisons of pairwise genetic distances and a preliminary species delimitation analysis using the Automatic Barcode Gap Discovery (ABGD) method demonstrated that some wide-ranging species on Borneo likely comprise multiple distinct and deeply divergent lineages, each with more restricted distributional ranges. We also tested the prevailing biogeographic hypothesis of a single invasion from Borneo into the Philippines. Our analyses revealed that Philippine taxa were not monophyletic, but were likely derived from multiple separate invasions into the geopolitical areas comprising the Philippines. Although our investigation of Bornean Cyrtodactylus is the most comprehensive to-date, it highlights the need for expanded taxonomic sampling and suggests that our knowledge of the evolutionary history, systematics, and biogeography of Bornean Cyrtodactylus is far from complete.
    Matched MeSH terms: Phylogeography*
  20. Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ
    Mol Phylogenet Evol, 2018 05;122:59-79.
    PMID: 29410353 DOI: 10.1016/j.ympev.2018.01.014
    Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.
    Matched MeSH terms: Phylogeography/history
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links