Displaying publications 21 - 40 of 60 in total

Abstract:
Sort:
  1. Mason Dentinger R
    J Hist Biol, 2016 04;49(2):359-95.
    PMID: 26307748 DOI: 10.1007/s10739-015-9421-8
    In 1960, American parasitologist Don Eyles was unexpectedly infected with a malariaparasite isolated from a macaque. He and his supervisor, G. Robert Coatney of the National Institutes of Health, had started this series of experiments with the assumption that humans were not susceptible to "monkey malaria." The revelation that a mosquito carrying a macaque parasite could infect a human raised a whole range of public health and biological questions. This paper follows Coatney's team of parasitologists and their subjects: from the human to the nonhuman; from the American laboratory to the forests of Malaysia; and between the domains of medical research and natural history. In the course of this research, Coatney and his colleagues inverted Koch's postulate, by which animal subjects are used to identify and understand human parasites. In contrast, Coatney's experimental protocol used human subjects to identify and understand monkey parasites. In so doing, the team repeatedly followed malaria parasites across the purported boundary separating monkeys and humans, a practical experience that created a sense of biological symmetry between these separate species. Ultimately, this led Coatney and his colleagues make evolutionary inferences, concluding "that monkeys and man are more closely related than some of us wish to admit." In following monkeys, men, and malaria across biological, geographical, and disciplinary boundaries, this paper offers a new historical narrative, demonstrating that the pursuit of public health agendas can fuel the expansion of evolutionary knowledge.
    Matched MeSH terms: Primates
  2. Zahidin MA, Jalil NA, Naharuddin NM, Abd Rahman MR, Gani M, Abdullah MT
    Data Brief, 2019 Aug;25:104133.
    PMID: 31321260 DOI: 10.1016/j.dib.2019.104133
    Tarsier is an endangered nocturnal primate in the family Tarsiidae and is an endemic to Sundaic islands of Philippine (Carlito syrichta), Sulawesi (Tarsius tarsier-complex) and Borneo (Cephalopachus bancanus). Recent records indicated that most molecular studies were done on the Eastern Tarsier and little information for the other group of tarsiers. Here, we present a partial cytochrome b data set of C. bancanus in Sarawak, Malaysian Borneo. Standard mist nets were deployed at strategic locations in various habitat types. A total of 18 individuals were caught, measured and weighed. Approximately, 2 × 2 mm of tissue samples were taken and preserved in molecular grade alcohol. Out of 18, only 11 samples were screened with partial mtDNA (cytochrome b) and the DNA sequences were registered in the GenBank (accession numbers: KY794797-KY794807). Phylogenetic trees were constructed with 20 additional mtDNA sequences downloaded from GenBank. The data are valuable for the management authorities to regulate the type of management units for the metapopulation to sustain population genetics integrity of tarsiers in the range countries across the Sunda Shelf.
    Matched MeSH terms: Primates
  3. Frias L, Hasegawa H, Chua TH, Sipangkui S, Stark DJ, Salgado-Lynn M, et al.
    Int J Parasitol, 2021 10;51(11):925-933.
    PMID: 33862059 DOI: 10.1016/j.ijpara.2021.03.003
    Parasites are important components of ecosystems, influencing trophic networks, competitive interactions and biodiversity patterns. Nonetheless, we are not nearly close to disentangling their complex roles in natural systems. Southeast Asia falls within global areas targeted as most likely to source parasites with zoonotic potential, where high rates of land conversion and fragmentation have altered the circulation of wildlife species and their parasites, potentially resulting in altered host-parasite systems. Although the overall biodiversity in the region predicts equally high, or even higher, parasite diversity, we know surprisingly little about wild primate parasites, even though this constitutes the first step towards a more comprehensive understanding of parasite transmission processes. Here, we characterise the gastrointestinal helminth parasite assemblages of a community of Bornean primates living along the Kinabatangan floodplain in Sabah (Malaysian Borneo), including two species endemic to the island. Through parasitological analyses, and by using several measures of parasite infection as proxies for parasite diversity and distribution, we show that (i) most parasite taxonomic groups are not limited to a single host, suggesting a greater flexibility for habitat disturbance, (ii) parasite infracommunities of nocturnal primates differ from their diurnal counterparts, reflecting both phylogenetic and ecological constraints, and (iii) soil-transmitted helminths such as whipworm, threadworm and nodule worm are widespread across the primate community. This study also provides new parasite records for southern pig-tailed macaques (Macaca nemestrina), silvered langurs (Trachypithecus cristatus) and Western tarsiers (Cephalopachus bancanus) in the wild, while adding to the limited records for the other primate species in the community. Given the information gap regarding primate-parasite associations in the region, the information presented here should prove relevant for future studies of parasite biodiversity and infectious disease ecology in Asia and elsewhere.
    Matched MeSH terms: Primates
  4. Teo SZ, Tuen AA, Madinah A, Aban S, Chong YL
    Trop Biomed, 2019 Sep 01;36(3):594-603.
    PMID: 33597481
    Gastrointestinal nematodes can cause assorted health problems to human and other primates. The status of gastrointestinal nematodes in non-human primates remained less documented in Malaysia. This study aimed to determine the occurrence of gastrointestinal nematodes recovered from the fecal samples of captive non-human primates at the Matang Wildlife Centre (MWC), Sarawak. Fresh fecal samples were collected from 60 non-human primates of six species (i.e. Orangutan, Bornean gibbon, Silvered Leaf monkey, Slow loris, Pig-tailed macaque, and Long-tailed macaque) and processed using simple fecal floatation method and fecal sedimentation method. This study shows high prevalence of nematode infection (>=50%) and co-infection (22 from 45 infected individuals) in all species of captive non-human primates found in MWC, except one individual of young Silvered Leaf monkey was negative for nematode. From these, eight genera of 11 species and one unknown nematode larvae were recovered and among them Oesophagostomum sp., Ascaris sp., and Strongyloides sp. were the most common nematodes infecting the non-human primates. All the Bornean gibbon (n=7) were found to be infected with nematodes. Moreover, Long-tailed macaques at the centre were heavily infected by Ascaris sp. (number of total count, nt = 2132; total mean abundance, MA=113.70). This is the first report of high prevalence nematode infection on multiple species of captive non-human primates in a wildlife centre located in Sarawak. Some of the nematodes are of zoonotic potential. This information is important for health care management, both in-situ and ex-situ conservations of captive and free-ranging nonhuman primates.
    Matched MeSH terms: Primates/parasitology*
  5. Mire CE, Satterfield BA, Geisbert TW
    Methods Mol Biol, 2023;2682:159-173.
    PMID: 37610581 DOI: 10.1007/978-1-0716-3283-3_12
    Hendra and Nipah viruses are henipaviruses that have caused lethal human disease in Australia and Malaysia, Bangladesh, India, and the Philippines, respectively. These viruses are considered Category C pathogens by the US Centers for Disease Control. Nipah virus was recently placed on the World Health Organization Research and Development Blueprint Roadmaps for vaccine and therapeutic development. Given the infrequent and unpredictable nature of henipavirus outbreaks licensure of vaccines and therapeutics will likely require an animal model to demonstrate protective efficacy against henipavirus disease. Studies have shown that nonhuman primates are the most accurate model of human henipavirus disease and would be an important component of any application for licensure of a vaccine or antiviral drug under the US FDA Animal Rule. Nonhuman primate model selection and dosing are discussed regarding vaccine and therapeutic studies against henipaviruses.
    Matched MeSH terms: Primates
  6. Tamrin NAM, Zainudin R, Esa Y, Alias H, Isa MNM, Croft L, et al.
    Animals (Basel), 2020 Dec 10;10(12).
    PMID: 33321745 DOI: 10.3390/ani10122359
    Taste perception is an essential function that provides valuable dietary and sensory information, which is crucial for the survival of animals. Studies into the evolution of the sweet taste receptor gene (TAS1R2) are scarce, especially for Bornean endemic primates such as Nasalis larvatus (proboscis monkey), Pongo pygmaeus (Bornean orangutan), and Hylobates muelleri (Muller's Bornean gibbon). Primates are the perfect taxa to study as they are diverse dietary feeders, comprising specialist folivores, frugivores, gummivores, herbivores, and omnivores. We constructed phylogenetic trees of the TAS1R2 gene for 20 species of anthropoid primates using four different methods (neighbor-joining, maximum parsimony, maximum-likelihood, and Bayesian) and also established the time divergence of the phylogeny. The phylogeny successfully separated the primates into their taxonomic groups as well as by their dietary preferences. Of note, the reviewed time of divergence estimation for the primate speciation pattern in this study was more recent than the previously published estimates. It is believed that this difference may be due to environmental changes, such as food scarcity and climate change, during the late Miocene epoch, which forced primates to change their dietary preferences. These findings provide a starting point for further investigation.
    Matched MeSH terms: Primates
  7. Rovie-Ryan JJ, Gani M, Lee YP, Gan HM, Abdullah MT
    Data Brief, 2019 Aug;25:104058.
    PMID: 31211204 DOI: 10.1016/j.dib.2019.104058
    This data article presents the first complete mitochondrial genome (mitogenome) of an endangered slow loris subspecies, Nycticebus coucang insularis Robinson, 1917 from Tioman Island, Pahang. Once considered as extinct, an individual of the subspecies was captured alive from the island during the 2016 Biodiversity Inventory Programme as highlighted in the related research article entitled "Rediscovery of Nycticebus coucang insularis Robinson, 1917 (Primates: Lorisidae) at Tioman Island and its mitochondrial genetic assessment" Rovie-Ryan et al., 2018. Using MiSeq™ sequencing system, the entire mitogenome recovered is 16,765 bp in length, made up of 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. The mitogenome has been deposited at DDBJ/EMBL/GenBank under the accession number NC_040292.1/MG515246.
    Matched MeSH terms: Primates
  8. Frias L, Stark DJ, Lynn MS, Nathan SK, Goossens B, Okamoto M, et al.
    Int J Parasitol Parasites Wildl, 2018 Aug;7(2):141-146.
    PMID: 29988792 DOI: 10.1016/j.ijppaw.2018.03.003
    Within host communities, related species are more likely to share common parasitic agents, and as a result, morphological similarities have led researchers to conclude that parasites infecting closely related hosts within a community represent a single species. However, genetic diversity within parasite genera and host range remain poorly investigated in most systems. Strongyloides is a genus of soil-transmitted nematode that has been reported from several primate species in Africa and Asia, and has been estimated to infect hundreds of millions of people worldwide, although no precise estimates are available. Here we describe a case of infection with a cryptic species of Strongyloides in a Bornean (Philippine) slow loris (Nycticebus menagensis) living within a diverse community of several primate species in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. Fresh fecal samples were collected from five primate species and nematode larvae cultured from these samples were selected for phylogenetic analyses. Sequences obtained for most larvae were identified as S. fuelleborni, grouping into three different clusters and showing no aggregation within specific hosts or geographic location. In contrast, a set of parasite sequences obtained from a slow loris clustered closely with S. stercoralis into a different group, being genetically distinct to sequences reported from other primate hosts, humans included. Our results suggest that although S. fuelleborni infects all haplorrhines sampled in this primate community, a different species might be infecting the slow loris, the only strepsirrhine in Borneo and one of the least studied primates in the region. Although more data are needed to support this conclusion, we propose that Strongyloides species in primates might be more diverse than previously thought, with potential implications for ecological and evolutionary host-parasite associations, as well as epidemiological dynamics.
    Matched MeSH terms: Primates
  9. Costantini D, Sebastiano M, Goossens B, Stark DJ
    Folia Primatol., 2017;88(1):46-56.
    PMID: 28662508 DOI: 10.1159/000477540
    Accelerometers enable scientists to quantify the activity of free-living animals whose direct observation is difficult or demanding due to their elusive nature or nocturnal habits. However, the deployment of accelerometers on small-bodied animals and, in particular, on primates has been little explored. Here we show the first application of accelerometers on the western tarsier (Cephalopachus bancanus borneanus), a nocturnal, small-bodied primate endemic to the forests of Borneo. The fieldwork was carried out in the Lower Kinabatangan Wildlife Sanctuary, Sabah, Malaysian Borneo. We provide guidelines for the deployment of accelerometers on tarsiers that might also be applied to other primate species. Our collected data on 2 females show levels of leaping activity comparable to those previously described using direct observation of wild or captive individuals. The 2 females showed different patterns of leaping activity, which calls for work to explore individual differences further. Our work demonstrates that accelerometers can be deployed on small primates to acquire body motion data that would otherwise be demanding to collect using classic field observations. Future work will be focused on using accelerometer data to discriminate in more detail the different behaviours tarsiers can display and to address the causes and consequences of individual variations in activity.
    Matched MeSH terms: Primates
  10. Reid MJC
    Am J Primatol, 2020 08;82(8):e23161.
    PMID: 32583538 DOI: 10.1002/ajp.23161
    Year 2020 has brought the greatest global pandemic to hit the world since the end of the First World War. The severe acute respiratory syndrome coronavirus 2 and the resulting disease named coronavirus disease 2019 has brought the world to its knees both financially and medically. The American Society of Primatologists has postponed their annual meetings from the end of May 2020 until the end of September 2020, while the International Primatological Society have postponed their biennial congress from August 2020 to August 2021, which has also resulted in their 2022 meetings in Malaysia being pushed back until 2023. Here, I explore the potential dangers of pursuing any primate fieldwork during this pandemic on our study species, their ecosystems, and local peoples. I believe that the risk of bringing this virus into our study ecosystems is too great and that primatologists should cancel all field research until the pandemic ends or a vaccine/reliable treatment is widely available. This is the year we all must become One Health practitioners!
    Matched MeSH terms: Primates*; Primate Diseases/prevention & control*; Primate Diseases/virology
  11. Lim YA, Ngui R, Shukri J, Rohela M, Mat Naim HR
    Vet Parasitol, 2008 Oct 20;157(1-2):154-9.
    PMID: 18723289 DOI: 10.1016/j.vetpar.2008.07.015
    A survey was undertaken to investigate the prevalence of intestinal parasites from different groups of mammals housed in a zoological garden in Malaysia. A total of 197 faecal samples were collected randomly from various primates (99), hoofed mammals (70) and feline (28). It was discovered that 89.3% of feline, 54.5% of primates and 45.7% of hoofed mammals were infected with intestinal parasites. Intestinal parasites found in primates were Balantidium coli (19.2%), Cryptosporidium spp. (14.1%), hookworm (10.1%), Trichuris spp. (5.1%), Ascaris (4.0%) and Blastocystis spp. (2.0%). For hoofed mammals, hookworm had the highest prevalence (34.3%) followed by Trichuris spp. and Cryptosporidium spp. (5.7%). Meanwhile, for feline, Toxocara cati was the most prevalent (64.3%), followed by Cryptosporidium spp. (14.3%), Spirometra spp. (7.1%), and hookworm (3.6%). Animals that were infected were all asymptomatic with low parasite load. Routine monitoring of the presence of parasites in animals kept in the zoo is imperative in assisting zoo management in the formulation and implementation of preventive and control measures against the spread of infectious parasitic diseases among animals within the zoo or to humans.
    Matched MeSH terms: Primates/parasitology*
  12. Beaudrot L, Struebig MJ, Meijaard E, van Balen S, Husson S, Young CF, et al.
    Am J Primatol, 2013 Feb;75(2):170-85.
    PMID: 23184656 DOI: 10.1002/ajp.22095
    For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co-occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology.
    Matched MeSH terms: Primates/physiology
  13. Mohamad Yusoff MA, Abdul Hamid AA, Mohammad Bunori N, Abd Halim KB
    J Mol Graph Model, 2018 Jun;82:137-144.
    PMID: 29730487 DOI: 10.1016/j.jmgm.2018.04.010
    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane.
    Matched MeSH terms: Primates
  14. Cheong, F.W., Lau, Y.L., Fong, M.Y.
    JUMMEC, 2015;18(2):1-7.
    MyJurnal
    Malaria is a major cause of mortality and morbidity globally. Great efforts have been made in the prevention and the elimination of malaria, especially in controlling the malaria vector, the mosquito. Another promising approach would be the development of malaria vaccines. Malaria vaccine studies can be focused on the pre-erythrocytic-stage antigens and the blood-stage antigens, and on the transmission blocking agents targeting the malaria gametocytes. The blood-stage antigens are the leading candidates in malaria vaccine development, as the blood-stage parasites are responsible for causing symptomatic malaria. Human acquired immunity largely targets on blood-stage antigens. This review focuses on one of the most extensively studied blood-stage antigen, the merozoite surface protein-1 (MSP-1), specifically on its evaluation and immunogenicity in rodents and primate models, and its safety and immunogenicity in human clinical trials.
    Matched MeSH terms: Primates
  15. Michal Christina Steven
    Borneo Epidemiology Journal, 2020;1(2):104-115.
    MyJurnal
    Introduction:Plasmodium knowlesi(P.knowlesi) is a zoonotic malaria parasite, transmitted between non-factors” or “individual factors” or “ecological factors” and “P.knowlesi” and “human” including human primate hosts by the Anopheles (An.) mosquitos, and causing spill-over infections in humans where the parasite, vector, host, and human converge
    Methods:The search was done electronically toexplore for appropriate papers viaPubMed, and Science Direct for articles published up to March 2020, containing the words “factors associated” or “environmental synonyms and Medical Subject Heading (MeSH) terms. A total of 27 articles from PubMed Databases and 18 articles from Science Direct were selected to be assessed for eligibility. Out of it, a total of 13 articles were selected to be analysed.
    Results:Host factors such as sex and age, as well as occupation as individual factors, while environmental factors such as rainfall and geographic elevation have some association with P.knowlesiinfection in humans. This zoonotic malaria poses unique challenges that will need to be addressed if all forms of malaria are to be eliminated based on the sustainable development goal (SDG)
    Conclusion:This article highlights the importance of disease ecologies such as climate and landscape and human-environment interactions such as the land use patterns, such as agriculture or infrastructure activities) to reduce the further increase of cases and mortality globally due to P.knowlesiinfection. This review focuses mainly on the host and environmental factors that influence P.knowlesiMalaria Infection in Humans
    Matched MeSH terms: Primates
  16. Chong YL, Ng KH
    Virus Genes, 2017 Dec;53(6):774-777.
    PMID: 28456924 DOI: 10.1007/s11262-017-1459-6
    Human bocavirus (HBoV) is a single-stranded DNA virus in Parvoviridae family, causing respiratory diseases in human. The recent identifications of genomic recombination among the four human bocavirus genotypes and related non-human primate bocaviruses have shed lights into the evolutionary processes underpinning the diversity of primate bocavirus. Among these reports, however, we found inconsistency and possible alternative interpretations of the recombination events. In this study, these recombination events were reviewed, and the related genome sequences were re-analysed, aiming to inform the research community of bocavirus with more consistent knowledge and comprehensive interpretations on the recombination history of primate bocavirus.
    Matched MeSH terms: Primates/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links