Displaying publications 21 - 40 of 152 in total

Abstract:
Sort:
  1. Prasanna MV, Nagarajan R, Chidambaram S, Elayaraja A
    Bull Environ Contam Toxicol, 2012 Sep;89(3):507-11.
    PMID: 22684361 DOI: 10.1007/s00128-012-0698-4
    A baseline study was carried out to assess the metal concentrations and microbial contamination at selected Lake waters in and around Miri City, East Malaysia. Sixteen surface water samples were collected at specific Lakes in the environs of major settlement areas and recreational centers in Miri City. The Physico-chemical parameters [pH, Electrical Conductivity (EC) and Dissolved Oxygen (DO)], metals (Fe, Mn, Cu, Cd, Ni and Zn) and Escherichia coli (E. coli) were analysed. The concentrations of Fe, Mn and Ni have been found to be above the permissible limits of drinking water quality standards. The metals data have also been used for the calculation of heavy metal pollution index. Higher values of E. coli indicate microbial contamination in the Lake waters.
    Matched MeSH terms: Water Microbiology
  2. Sinang SC, Poh KB, Shamsudin S, Sinden A
    Bull Environ Contam Toxicol, 2015 Oct;95(4):542-7.
    PMID: 26248788 DOI: 10.1007/s00128-015-1620-7
    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.
    Matched MeSH terms: Fresh Water/microbiology
  3. Makky EA, Park GS, Choi IW, Cho SI, Kim H
    Chemosphere, 2011 May;83(9):1228-33.
    PMID: 21489600 DOI: 10.1016/j.chemosphere.2011.03.030
    The protozoan parasites such as Cryptosporidiumparvum and Giardialamblia have been recognized as a frequent cause of recent waterborne disease outbreaks because of their strong resistance against chlorine disinfection. In this study, ozone and Fe(VI) (i.e., FeO(4)(2-)) were compared in terms of inactivation efficiency for Bacillus subtilis spores which are commonly utilized as an indicator of protozoan pathogens. Both oxidants highly depended on water pH and temperature in the spore inactivation. Since redox potential of Fe(VI) is almost the same as that of ozone, spore inactivation efficiency of Fe(VI) was expected to be similar with that of ozone. However, it was found that ozone was definitely superior over Fe(VI): at pH 7 and 20°C, ozone with the product of concentration×contact time (C¯T) of 10mgL(-1)min inactivate the spores more than 99.9% within 10min, while Fe(VI) with C¯T of 30mgL(-1) min could inactivate 90% spores. The large difference between ozone and Fe(VI) in spore inactivation was attributed mainly to Fe(III) produced from Fe(VI) decomposition at the spore coat layer which might coagulate spores and make it difficult for free Fe(VI) to attack live spores.
    Matched MeSH terms: Water Microbiology
  4. Gan HM, Shahir S, Ibrahim Z, Yahya A
    Chemosphere, 2011 Jan;82(4):507-13.
    PMID: 21094980 DOI: 10.1016/j.chemosphere.2010.10.094
    A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μ(max), K(s) and K(i) were determined to be 0.13 h⁻¹, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.
    Matched MeSH terms: Water Microbiology
  5. Lee KM, Lim PE
    Chemosphere, 2005 Jan;58(4):407-16.
    PMID: 15620732
    The role of bioregeneration process in renewing the adsorbent surface for further adsorption of organics during simultaneous adsorption and biodegradation processes has been well recognized. The extent of bioregeneration of powdered activated carbon (PAC) as an adsorbent loaded with phenol, p-methylphenol, p-ethylphenol and p-isopropylphenol, respectively, in the simultaneous adsorption and biodegradation processes were quantitatively determined using oxygen uptake as a measure of substrate consumption. Bioregeneration phenomenon was also evaluated in the simultaneous adsorption and biodegradation processes under sequencing batch reactor (SBR) operation to treat synthetic wastewater containing 1200 mg l(-1) phenol and p-methylphenol, respectively. The SBR systems were operated with FILL, REACT, SETTLE, DRAW and IDLE periods in the ratio of 4:6:1:0.75:0.25 for a cycle time of 12 h. The results show that the percentage of desorption from loaded PAC decreased in the order phenol>p-methylphenol>p-ethylphenol>p-isopropylphenol. For the treatment of phenol and p-methylphenol in the SBR reactors, respectively, the simultaneous adsorption and biodegradation processes were able to produce a consistent effluent quality of COD < or = 100 mg l(-1) when the applied PAC dosage was 0.115 and 0.143 g PAC per cycle, respectively. When no further PAC was added, the treatment performance deteriorated to that of the case without PAC addition after 68 and 48 cycles of SBR operation, respectively, for phenol and p-methylphenol. This observation is consistent with the greater extent of bioregeneration for phenol-loaded PAC as compared to p-methylphenol-loaded PAC.
    Matched MeSH terms: Water Microbiology
  6. Sekine M, Akizuki S, Kishi M, Kurosawa N, Toda T
    Chemosphere, 2020 Apr;244:125381.
    PMID: 31805460 DOI: 10.1016/j.chemosphere.2019.125381
    Sulfide inhibition to nitrifying bacteria has prevented the integration of digestate nitrification and biogas desulfurization to simplify anaerobic digestion systems. In this study, liquid digestate with NaHS solution was treated using nitrifying sludge in a sequential-batch reactor with a long fill period, with an ammonium loading rate of 293 mg-N L-1 d-1 and a stepwise increase in the sulfide loading rate from 0 to 32, 64, 128, and 256 mg-S L-1 d-1. Batch bioassays and microbial community analysis were also conducted with reactor sludge under each sulfide loading rate to quantify the microbial acclimatization to sulfide. In the reactor, sulfide was completely removed. Complete nitrification was maintained up to a sulfide load of 128 mg-S L-1 d-1, which is higher than that in previous reports and sufficient for biogas treatment. In the batch bioassays, the sulfide tolerance of NH4+ oxidizing activity (the 50% inhibitory sulfide concentration) increased fourfold over time with the compositional shift of nitrifying bacteria to Nitrosomonas nitrosa and Nitrobacter spp. However, the sulfur removal rate of the sludge slightly decreased, although the abundance of the sulfur-oxidizing bacteria Hyphomicrobium increased by 30%. Therefore, nitrifying sludge was probably acclimatized to sulfide not by the increasing sulfide removal rate but rather by the increasing nitrifying bacteria, which have high sulfide tolerance. Successful simultaneous nitrification and desulfurization were achieved using a sequential-batch reactor with a long fill period, which was effective in facilitating the present acclimatization.
    Matched MeSH terms: Waste Water/microbiology
  7. Bilung LM, Pui CF, Su'ut L, Apun K
    Dis Markers, 2018;2018:1351634.
    PMID: 30154937 DOI: 10.1155/2018/1351634
    In the last decades, leptospirosis had gained public health concern due to morbidity and mortality rates caused by pathogenic Leptospira. The need for rapid and robust molecular typing methods to differentiate this zoonotic pathogen is of utmost importance. Various studies had been conducted to determine the genetic relatedness of Leptospira isolates using molecular typing methods. In this study, 29 pathogenic Leptospira isolates from rat, soil, and water samples in Sarawak, Malaysia, were characterized using BOX-PCR and ERIC-PCR. The effectiveness of these two methods with regard to the ease of interpretation, reproducibility, typeability, and discriminatory power was also being evaluated. Using BOX-PCR, six clusters and 3 single isolates were defined at a genetic distance percentage of 11.2%. ERIC-PCR clustered the isolates into 6 clusters and 2 single isolates at a genetic distance percentage of 6.8%. Both BOX-PCR and ERIC-PCR produced comparable results though the discriminatory index for ERIC-PCR (0.826) was higher than that for BOX-PCR (0.809). From the constructed dendrogram, it could be summarized that the isolates in this study were highly heterogeneous and genetically diverse. The findings from this study indicated that there is no genetic relatedness among the pathogenic Leptospira isolates in relation to the locality, source, and identity, with some exceptions. Out of the 29 pathogenic Leptospira isolates studied, BOX-PCR and ERIC-PCR successfully discriminated 4 isolates (2 isolates each) into the same cluster in relation to sample sources, as well as 2 isolates into the same cluster in association with the sample locality. Future studies shall incorporate the use of other molecular typing methods to make a more thorough comparison on the genetic relatedness of pathogenic Leptospira.
    Matched MeSH terms: Water Microbiology
  8. Wen X, Mi J, Wang Y, Ma B, Zou Y, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 May 30;173:96-102.
    PMID: 30769208 DOI: 10.1016/j.ecoenv.2019.02.023
    Livestock farms are commonly regarded as the main sources of antibiotic resistance genes (ARGs), emerging pollutants with potential implications for human health, in the environment. This study investigated the occurrence and contamination profiles of nine ARGs of three types from swine manure to receiving environments (soil and water) in Guangdong Province, southern China. All ARGs occurred in 100% of swine manure samples. Moreover, the absolute concentration of total ARGs varied from 3.01 × 108 to 7.18 × 1014 copies/g, which was significantly higher than that in wastewater and manured soil (p  0.05). However, the number of ARGs (ermB, qnrS, acc(6')-Ib, tetM, tetO and tetQ) decreased but were not eliminated by wastewater treatment components (p 
    Matched MeSH terms: Waste Water/microbiology*
  9. Sejvar J, Bancroft E, Winthrop K, Bettinger J, Bajani M, Bragg S, et al.
    Emerg Infect Dis, 2003 Jun;9(6):702-7.
    PMID: 12781010
    Adventure travel is becoming more popular, increasing the likelihood of contact with unusual pathogens. We investigated an outbreak of leptospirosis in "Eco-Challenge" multisport race athletes to determine illness etiology and implement public health measures. Of 304 athletes, we contacted 189 (62%) from the United States and 26 other countries. Eighty (42%) athletes met our case definition. Twenty-nine (36%) case-patients were hospitalized; none died. Logistic regression showed swimming in the Segama River (relative risk [RR]=2.0; 95% confidence interval [CI]=1.3 to 3.1) to be an independent risk factor. Twenty-six (68%) of 38 case-patients tested positive for leptospiral antibodies. Taking doxycycline before or during the race was protective (RR=0.4, 95% CI=0.2 to 1.2) for the 20 athletes who reported using it. Increased adventure travel may lead to more frequent exposure to leptospires, and preexposure chemoprophylaxis for leptospirosis (200 mg oral doxycycline/week) may decrease illness risk. Efforts are needed to inform adventure travel participants of unique infections such as leptospirosis.
    Matched MeSH terms: Fresh Water/microbiology; Water Microbiology
  10. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Water Microbiology; Waste Water/microbiology
  11. Trottet A, Wilson B, Sew Wei Xin G, George C, Casten L, Schmoker C, et al.
    Environ Manage, 2018 02;61(2):275-290.
    PMID: 29204675 DOI: 10.1007/s00267-017-0966-5
    Resting strategies of planktonic organisms are important for the ecological processes of coastal waters and their impacts should be taken into consideration in management of water bodies used by multiple industries. We combined different approaches to evaluate the importance of resting stages in Singapore coastal waters. We used molecular approaches to improve the knowledge on Singapore biodiversity, we sampled and extracted cysts from sediments to evaluate the density of resting stages in Johor Strait, and we compared systematically information on Singapore planktonic biodiversity to existing published information on resting stages from these reported organisms. This is the first study evaluating the importance of resting stages in Singapore waters. Above 120 species reported in Singapore are known to produce resting stages though no previous work has ever been done to evaluate the importance of these strategies in these waters. The results from the resting stage survey confirmed 0.66 to 5.34 cyst g-1 dry weight sediment were present in the Johor Strait suggesting that cysts may be flushed by tidal currents into and out of the strait regularly. This also suggest that the blooms occurring in Singapore are likely due to secondary growth of Harmful Algae Bloom species in the water rather than from direct germination of cysts from sediment. Finally, we discuss the importance of these resting eggs for three main national industries in Singapore (shipping, marine aquaculture and provision of drinking water through seawater desalination). We argue that this study will serve as a baseline for some of the future management of Singapore waters.
    Matched MeSH terms: Water Microbiology
  12. Affum AO, Osae SD, Nyarko BJ, Afful S, Fianko JR, Akiti TT, et al.
    Environ Monit Assess, 2015 Feb;187(2):1.
    PMID: 25600401 DOI: 10.1007/s10661-014-4167-x
    In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
    Matched MeSH terms: Drinking Water/microbiology
  13. Dada AC, Ahmad A, Usup G, Heng LY
    Environ Monit Assess, 2013 Feb;185(2):1583-99.
    PMID: 22592782 DOI: 10.1007/s10661-012-2653-6
    We report the first study on the occurrence of antibiotic-resistant enterococci in coastal bathing waters in Malaysia. One hundred and sixty-five enterococci isolates recovered from two popular recreational beaches in Malaysia were speciated and screened for antibiotic resistance to a total of eight antibiotics. Prevalence of Enterococcus faecalis and Enterococcus faecium was highest in both beaches. E. faecalis/E. faecium ratio was 0.384:1 and 0.375:1, respectively, for isolates from Port Dickson (PD) and Bagan Lalang (BL). Analysis of Fisher's exact test showed that association of prevalence of E. faecalis and E. faecium with considered locations was not statistically significant (p < 0.05). Chi-square test revealed significant differences (χ(2) = 82.630, df = 20, p < 0.001) in the frequency of occurrence of enterococci isolates from the considered sites. Resistance was highest to nalidixic acid (94.84 %) and least for chloramphenicol (8.38 %). One-way ANOVA using Tukey-Kramer multiple comparison test showed that resistance to ampicillin was higher in PD beach isolates than BL isolates and the difference was extremely statistically significant (p < 0.0001). Frequency of occurrence of multiple antibiotic resistance (MAR) isolates were higher for PD beach water (64.29 %) as compared to BL beach water (13.51 %), while MAR indices ranged between 0.198 and 0.48. The results suggest that samples from Port Dickson may contain MAR bacteria and that this could be due to high-risk faecal contamination from sewage discharge pipes that drain into the sea water.
    Matched MeSH terms: Water Microbiology*
  14. Dada AC, Ahmad A, Usup G, Heng LY, Hamid R
    Environ Monit Assess, 2013 Sep;185(9):7427-43.
    PMID: 23417753 DOI: 10.1007/s10661-013-3110-x
    We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
    Matched MeSH terms: Water Microbiology*
  15. Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Aziz SA
    Environ Monit Assess, 2018 Mar 22;190(4):241.
    PMID: 29569066 DOI: 10.1007/s10661-018-6613-7
    Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
    Matched MeSH terms: Fresh Water/microbiology; Water Microbiology/standards*
  16. Ganapathy B, Yahya A, Ibrahim N
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11113-11125.
    PMID: 30788704 DOI: 10.1007/s11356-019-04334-8
    Despite being a key Malaysian economic contributor, the oil palm industry generates a large quantity of environmental pollutant known as palm oil mill effluent (POME). Therefore, the need to remediate POME has drawn a mounting interest among environmental scientists. This study has pioneered the application of Meyerozyma guilliermondii with accession number (MH 374161) that was isolated indigenously in accessing its potential to degrade POME. This strain was able to treat POME in shake flask experiments under aerobic condition by utilising POME as a sole source of carbon. However, it has also been shown that the addition of suitable carbon and nitrogen sources has significantly improved the degradation potential of M. guilliermondii. The remediation of POME using this strain resulted in a substantial reduction of chemical oxygen demand (COD) of 72%, total nitrogen of 49.2% removal, ammonical nitrogen of 45.1% removal, total organic carbon of 46.6% removal, phosphate of 60.6% removal, and 92.4% removal of oil and grease after 7 days of treatment period. The strain also exhibited an extracellular lipase activity which promotes better wastewater treatment. Additionally, Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses have specifically shown that M. guilliermondii strain can degrade hydrocarbons, fatty acids, and phenolic compounds present in the POME. Ultimately, this study has demonstrated that M. guilliermondii which was isolated indigenously exhibits an excellent degrading ability. Therefore, this strain is suitable to be employed in the remediation of POME, contributing to a safe discharge of the effluent into the environment.
    Matched MeSH terms: Waste Water/microbiology*
  17. Heng GC, Isa MH, Lim JW, Ho YC, Zinatizadeh AAL
    Environ Sci Pollut Res Int, 2017 Dec;24(35):27113-27124.
    PMID: 28963706 DOI: 10.1007/s11356-017-0287-5
    Biological treatments, such as activated sludge process, are common methods to treat municipal and industrial wastewaters. However, they produce huge amounts of waste activated sludge (WAS). The excess sludge treatment and disposal are a challenge for wastewater treatment plants due to economic, environmental, and regulatory factors. In this study, photo-Fenton pretreatment (oxidation using hydrogen peroxide and iron catalyst aided with UV light) was optimized using response surface methodology (RSM) and central composite design (CCD) to determine the effects of three operating parameters (H2O2 dosage, H2O2/Fe2+ molar ratio, and irradiation time) on disintegration and dewaterability of WAS. MLVSS removal, capillary suction time (CST) reduction, sCOD, and EPS were obtained as 70%, 25%, 12,000 mg/L, and 500 mg/L, respectively, at the optimal conditions, i.e., 725 g H2O2/kg TS, H2O2/Fe2+ molar ratio 80, and irradiation time 40 min. Two batch-fed completely mixed mesophilic anaerobic digesters were then operated at 15-day solid retention time (SRT) and 37 ± 0.5 °C to compare the digestibility of untreated and photo-Fenton pretreated sludge in terms of volatile solids (VS) reduction, COD removal, and biogas production at steady-state operations. Photo-Fenton pretreatment followed by anaerobic digestion of WAS was very effective and yielded 75.7% total VS reduction, 81.5% COD removal, and 0.29-0.31 m3/kg VSfed·d biogas production rate, compared to 40.7% total VS solid reduction, 54.7% COD removal, and 0.12-0.17 m3/kg VSfed·d biogas production rate for control. Thus, photo-Fenton can be a useful pretreatment step in sludge management.
    Matched MeSH terms: Waste Water/microbiology
  18. Hariz HB, Takriff MS
    Environ Sci Pollut Res Int, 2017 Sep;24(25):20209-20240.
    PMID: 28791508 DOI: 10.1007/s11356-017-9742-6
    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
    Matched MeSH terms: Waste Water/microbiology*
  19. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
    Matched MeSH terms: Waste Water/microbiology
  20. Radu S, Ho YK, Lihan S, Yuherman, Rusul G, Yasin RM, et al.
    Epidemiol Infect, 1999 Oct;123(2):225-32.
    PMID: 10579441
    A total of 31 strains of Vibrio cholerae O1 (10 from outbreak cases and 7 from surface water) and non-O1 (4 from clinical and 10 from surface water sources) isolated between 1993 and 1997 were examined with respect to presence of cholera enterotoxin (CT) gene by PCR-based assays, resistance to antibiotics, plasmid profiles and random amplified polymorphic DNA (RAPD) analysis. All were resistant to 9 or more of the 17 antibiotics tested. Identical antibiotic resistance patterns of the isolates may indicate that they share a common mode of developing antibiotic resistance. Furthermore, the multiple antibiotic resistance indexing showed that all strains tested originated from high risk contamination. Plasmid profile analysis by agarose gel electrophoresis showed the presence of small plasmids in 12 (7 non-O1 and 5 O1 serotypes) with sizes ranging 1.3-4.6 MDa. The CT gene was detected in all clinical isolates but was present in only 14 (6 O1 serotype and 8 non-O1 serotype) isolates from environmental waters. The genetic relatedness of the clinical and environmental Vibrio cholerae O1 and non-O1 strains was investigated by RAPD fingerprinting with four primers. The four primers generated polymorphisms in all 31 strains of Vibrio cholerae tested, producing bands ranging from < 250 to 4500 bp. The RAPD profiles revealed a wide variability and no correlation with the source of isolation. This study provides evidence that Vibrio cholerae O1 and non-O1 have significant public health implications.
    Matched MeSH terms: Water Microbiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links