Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Marchette NJ, Rudnick A, Garcia R
    PMID: 7403943
    A serum survey of several characteristic groups of humans in urban, rural, and forested areas of Peninsular Malaysia for evidence of infection with three alphaviruses (Sindbis, getah, and chikungunya) was made on 4384 specimens collected between 1965 and 1969. Analysis of the serological results indicated that 1) persons residing in predominantly rural and forested areas have higher frequencies of specific alphavirus antibody of all three viruses than persons residing in urban areas, 2) human infection with chikungunya virus appears to be at a low level of activity but is widespread, although more common and recent in the northern part of the country, and 3) Sindbis and getah viruses probably do not represent a threat to the public health, but chikungunya virus remains a potential menance and may be responsible for future epidemics transmitted by A. aegypti and A. albopictus mosquitoes.
    Matched MeSH terms: Arbovirus Infections/immunology*
  2. Kan SK, Kay RW, Lim TW, Chew V
    Med J Malaysia, 1978 Jun;32(4):289-91.
    PMID: 732623
    Matched MeSH terms: Arbovirus Infections/immunology*
  3. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, et al.
    Environ Sci Pollut Res Int, 2015 Dec;22(24):20067-83.
    PMID: 26300364 DOI: 10.1007/s11356-015-5253-5
    Mosquito-borne diseases represent a deadly threat for millions of people worldwide. However, the use of synthetic insecticides to control Culicidae may lead to high operational costs and adverse non-target effects. Plant-borne compounds have been proposed for rapid extracellular synthesis of mosquitocidal nanoparticles. Their impact against biological control agents of mosquito larval populations has been poorly studied. We synthesized silver nanoparticles (AgNP) using the aqueous leaf extract of Mimusops elengi as a reducing and stabilizing agent. The formation of AgNP was studied using different biophysical methods, including UV-vis spectrophotometry, TEM, XRD, EDX and FTIR. Low doses of AgNP showed larvicidal and pupicidal toxicity against the malaria vector Anopheles stephensi and the arbovirus vector Aedes albopictus. AgNP LC50 against A. stephensi ranged from 12.53 (I instar larvae) to 23.55 ppm (pupae); LC50 against A. albopictus ranged from 11.72 ppm (I) to 21.46 ppm (pupae). In the field, the application of M. elengi extract and AgNP (10 × LC50) led to 100 % larval reduction after 72 h. In adulticidal experiments, AgNP showed LC50 of 13.7 ppm for A. stephensi and 14.7 ppm for A. albopictus. The predation efficiency of Gambusia affinis against A. stephensi and A. albopictus III instar larvae was 86.2 and 81.7 %, respectively. In AgNP-contaminated environments, predation was 93.7 and 88.6 %, respectively. This research demonstrates that M. elengi-synthesized AgNP may be employed at ultra-low doses to reduce larval populations of malaria and arbovirus vectors, without detrimental effects on predation rates of mosquito natural enemies, such as larvivorous fishes.
    Matched MeSH terms: Arbovirus Infections/prevention & control
  4. Lani R, Thariq IM, Suhaimi NS, Hassandarvish P, Abu Bakar S
    Hum Vaccin Immunother, 2024 Dec 31;20(1):2306675.
    PMID: 38263674 DOI: 10.1080/21645515.2024.2306675
    Arboviruses are a significant threat to global public health, with outbreaks occurring worldwide. Toll-like receptors (TLRs) play a crucial role in the innate immune response against these viruses by recognizing pathogen-associated molecular patterns and initiating an inflammatory response. Significantly, TLRs commonly implicated in the immune response against viral infections include TLR2, TLR4, TLR6, TLR3, TLR7, and TLR8; limiting or allowing them to replicate and spread within the host. Modulating TLRs has emerged as a promising approach to combat arbovirus infections. This review summarizes recent advances in TLR modulation as a therapeutic target in arbovirus infections. Studies have shown that the activation of TLRs can enhance the immune response against arbovirus infections, leading to increased viral clearance and protection against disease. Conversely, inhibition of TLRs can reduce the excessive inflammation and tissue damage associated with arbovirus infection. Modulating TLRs represents a potential therapeutic strategy to combat arbovirus infections.
    Matched MeSH terms: Arbovirus Infections*
  5. Lim TW, Burhainuddin M, Abbas A
    Med J Malaya, 1972 Dec;27(2):147-9.
    PMID: 4268041
    Matched MeSH terms: Arbovirus Infections*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links