Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Mat Jalaluddin NS, Othman RY, Harikrishna JA
    Crit Rev Biotechnol, 2018 Sep 09.
    PMID: 30198341 DOI: 10.1080/07388551.2018.1496064
    It has only been about 20 years since the first Nobel Prize-winning work on RNA interference (RNAi) in Caenorhabditis elegans was published in the journal Nature. Fast forward to today, and the use of RNA molecules as gene-silencing elements in crops has helped scientists to unveil possible solutions to the global problems of agricultural losses due to pests, viruses, pathogens, and to other abiotic and biotic stresses. The recent proliferation of publications suggests that the technology has gained significant attention and received ample funding support. In this article, an attempt has been made to visualize recent trends in Research & Development (R&D) investment in this field by analyzing top cited scholarly articles, patent trends, and commercialization activity. The publication and citation analysis identified that the development of RNAi-based crops conferring resistance against viruses, fungi, and pests are at the forefront of RNAi research and that Chinese and US institutions are the leaders in this field. The patent landscape analysis for RNAi technology over all aspects related to RNAi-derived crops provides an overview of patenting activity from a geographical, organizational, and legal perspective. Such an exercise is pivotal to industry players and public institutions aiming at creating intellectual property that is commercially appealing. An upswing in commercial interests in this technology in recent years is reflected by a consistent number of patent filings in US, European, and Chinese patent offices, with multinational giant firms as the most prolific patent filers. The expanding RNAi commercialization landscape is supported by a series of strategic partnerships, licensing agreements, and acquisitions created between agribusinesses, public research institutions, and startup companies. From key observations, we would like to highlight that such investments have very positive impacts on the development of RNAi technology. Nonetheless, the success of this technology is dependent on several factors, such as financial requirements, the complexity, and timeframe of the entire development process, as well as stringent regulations imposed by the relevant authorities. In most countries, RNAi-based transgenic crops are still considered as a genetically modified (GM) product, which necessitates the crops to undergo rigorous evaluation before approval is granted. Recent advancements in exogenous RNAi-derived biopesticides have provided a nontransgenic alternative to GM crops. However, challenges still remain in the form of technical hurdles and regulatory ambiguities surrounding this emerging technology. Its full potential remains to be realized.
    Matched MeSH terms: Biological Control Agents
  2. Shokryazdan P, Faseleh Jahromi M, Liang JB, Ho YW
    J Am Coll Nutr, 2017 09 22;36(8):666-676.
    PMID: 28937854 DOI: 10.1080/07315724.2017.1337529
    Probiotics have become highly recognized as supplements for humans and animals because of their beneficial effects on health and well-being. The present review aims to provide an overview of different steps through which microbial strains become applicable probiotics in food and/or feed industries. Isolation of potential probiotic strains is the first step. Lactic acid bacteria are the most frequently used microorganisms as probiotics, which can be isolated from human, animal, plant, and environment. The next steps are identification of the isolates and characterization of them based on the main selection criteria for any potential probiotic microorganism, including resistance to gastric acidity and bile salt, adherence to mucus and/or intestinal epithelial cells and cell lines, and antimicrobial and antagonism activity against potentially pathogenic microbes. There are additional probiotic properties that may be considered for selection of probiotic strains with specific effects, such as cholesterol reduction ability, antioxidant activity, or cytotoxic effect against cancer cells. However, a potential probiotic does not need to fulfill all such selection criteria. As the last step, safety status of probiotics for humans is verified by taxonomy clarification, in vitro and in vivo tests, human trials, and genome sequencing.
    Matched MeSH terms: Biological Control Agents
  3. Ghani IA, Dieng H, Abu Hassan ZA, Ramli N, Kermani N, Satho T, et al.
    PLoS One, 2013;8(12):e81642.
    PMID: 24349104 DOI: 10.1371/journal.pone.0081642
    Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera.
    Matched MeSH terms: Biological Control Agents
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links