Displaying publications 21 - 40 of 79 in total

Abstract:
Sort:
  1. Shah Rizal Kasim, Yeong, Meng Yee, Hazizan Md. Akil, Zainal Arifin Ahmad, Hazman Seli
    MyJurnal
    Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
    Matched MeSH terms: Bone Substitutes
  2. Muhammad Awaludin, M.S., Mariattia, M.
    MyJurnal
    Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. In this study, porous hydroxyapatite (HA) was produced via polymer replication method. Polyurethane (PU) sponge was selected as the template and synthetic binder, polyvinyl alcohol (PVA) was used in this study. Fixed formulation of HA powder, distilled water and PVA (40:60:3) were prepared and stirred at a constant 4 hours time. PU sponges with 30 ppi and 60 ppi size were cut and impregnated in slurry using vacuum and roller infiltration methods. The microstructures were observed by using field emission scanning electron microscope (FESEM). The results obtained indicate that vacuum infiltration method and 60 ppi template pore size exhibited the highest compressive strength with moderate average strut thickness and lowest average pore size compared to samples produced by roller infiltration method at different template pore size.
    Matched MeSH terms: Bone Substitutes
  3. Azmi A, Latiff AZ, Johari A
    Med J Malaysia, 2004 Aug;59(3):418-21.
    PMID: 15727391
    We conducted a prospective study in order to audit our experience of repairing cranial defects using Methyl methacrylate. This included a total of 49 patients undergoing cranioplasty using methyl methacrylate, of which 45 were males and 4 females. The age of patients at the time of surgery ranged from 16 to 40 years old, with an average of 24 years. Malays were the majority (67%), followed by Chinese (23%) and Indian (10%). Cranial defects were mainly caused by motor vehicle accident (94%), while gunshot wounds, industrial accidents and tumours, each contribute 2%. Bone flaps were commonly removed during previous surgery related to traumatic subdural haemorrhage (33%), contusion (21%) and intracerebral haemorrhage (14%). The size of cranial defects ranged from 28 cm2 to 440 cm2, with an average of 201 cm2. Most had right sided (55%) and lateral defects [temporoparietal (52%) followed by temporal (16%), frontal (16%), frontotemporal (14%) and occipital (2%)]. Duration of surgery ranged from 70 to 275 minutes, with an average of 135 minutes. Nine of 12 patients (75%) with neurological disability had some improvement while 85% of symptomatic patients had symptoms improvement after cranioplasty. The infection rate in this series was 4%.
    Matched MeSH terms: Bone Substitutes/therapeutic use*; Bone Substitutes/chemistry
  4. Ramesh S, Tan CY, Aw KL, Yeo WH, Hamdi M, Sopyan I, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:89-90.
    PMID: 19024998
    The sintering behaviour of a commercial HA and synthesized HA was investigated over the temperature range of 700 degrees C to 1400 degrees C in terms of phase stability, bulk density, Young's modulus and Vickers hardness. In the present research, a wet chemical precipitation reaction was successfully employed to synthesize a submicron, highly crystalline, high purity and single phase stoichiometric HA powder that is highly sinteractive particularly at low temperature regimes below 1100 degrees C. It has been revealed that the sinterability of the synthesized HA was significantly greater than that of the commercial HA. The temperature for the onset of sintering and the temperature required to achieve densities above 98% of theoretical value were approximately 150 degrees C lower for the synthesized HA than the equivalent commercial HA. Nevertheless, decomposition of HA phase upon sintering was not observed in the present work for both powders.
    Matched MeSH terms: Bone Substitutes*
  5. Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:14-5.
    PMID: 19024961
    Porous calcium phosphate ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defects and augmentation, artificial bone graft material, and prosthesis revision surgery. Their high surface area leads to excellent osteoconductivity and resorbability providing fast bone ingrowths. Porous calcium phosphate can be produced by a variety of methods. This paper discusses briefly fundamental aspects of porous calcium phosphate for biomedical applications as well as various techniques used to prepare porous calcium phosphate.
    Matched MeSH terms: Bone Substitutes*
  6. Ng AM, Tan KK, Phang MY, Aziyati O, Tan GH, Isa MR, et al.
    J Biomed Mater Res A, 2008 May;85(2):301-12.
    PMID: 17688285
    Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering.
    Matched MeSH terms: Bone Substitutes*
  7. Fadilah A, Zuki AB, Loqman MY, Zamri-Saad M, Norimah Y, Asnah H
    Med J Malaysia, 2004 May;59 Suppl B:178-9.
    PMID: 15468876
    The study was carried out to evaluate macroscopically the ability of coral to repair a large size bone defect. A total 12 adult, male sheep were used in the study. The large bone defect (2.5cm x 0.5cm x 0.5cm) was created surgically on the left proximal femur and replaced by a block of coral (Porites sp.). Radiographs were obtained immediately after surgery and at 2, 4, 8 and 12 weeks post-implantation. Ultrasonographic examinations were carried out every 2 weeks after implantation up to 12 weeks using ultrasound machine (TOSHIBA Capasee II) connected with 7MHz frequency transducer. The sheep were euthanased at 2, 4, 8, and 12 weeks post-implantation and the bone examined grossly. Both ultrasonographs and radiographs taken at 8 and 12 weeks showed that the implants had been resorbed and left the space that much reduced in size. There was no sign of implant rejection observed in all animals. The results showed that processed coral has potential to become bone substitute for reconstructive bone surgery.
    Matched MeSH terms: Bone Substitutes/analysis*
  8. Inayat-Hussain SH, Rajab NF, Roslie H, Hussin AA, Ali AM, Annuar BO
    Med J Malaysia, 2004 May;59 Suppl B:176-7.
    PMID: 15468875
    Biomaterials intended for end-use application as bone-graft substitutes have to undergo safety evaluation. In this study, we investigated the in vitro cytotoxic effects especially to determine the mode of death of two hydroxyapatite compounds (HA2, HA3) which were synthesized locally. The methods used for cytotoxicity was the standard MTT assay whereas AO/PI staining was performed to determine the mode of cell death in HA treated L929 fibroblasts. Our results demonstrated that both HA2 and HA3 were not significantly cytotoxic as more than 75% cells after 72 hours treatment were viable. Furthermore, we found that the major mode of cell death in HA treated cells was apoptosis. In conclusion, our results demonstrated that these hydroxyapatite compounds are not cytotoxic where the mode of death was primarily via apoptosis.
    Matched MeSH terms: Bone Substitutes/toxicity*
  9. Shamsuria O, Fadilah AS, Asiah AB, Rodiah MR, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:174-5.
    PMID: 15468874
    The aim of this study was to evaluate the in vitro cytotoxicity of biomaterials; Hydroxyapatite (HA), Natural coral (NC) and Polyhydroxybutarate (PHB). Three different materials used in this study; HA (Ca10(PO4)6(OH)2), NC (CaCO3) and PHB (Polymer) were locally produced by the groups of researcher from Universiti Sains Malaysia. The materials were separately extracted in the complete culture medium (100mg/ml) for 72h and introduced to the osteoblast cells CRL-1543. The viability of osteoblast CRL-1543 cultivated with these extraction materials after 72h incubation period was compared to negative control with neutral red assay by using spectrophotometer at 540nm. The results showed the non-cytotoxicity of the materials. After 72h of incubation period, HA showed 123% viable cells, NC was 99.43% and PHB was 176.75%. In this study, cytotoxicity test dealt mainly with the substances that leached out from the biomaterial. The results obtained showed that the materials were not toxic and also promoted cells growth in the sense of biofunctionality.
    Matched MeSH terms: Bone Substitutes/toxicity*
  10. Rajab NF, Yaakob TA, Ong BY, Hamid M, Ali AM, Annuar BO, et al.
    Med J Malaysia, 2004 May;59 Suppl B:170-1.
    PMID: 15468872
    Hydroxyapatite is the main component of the bone which is a potential biomaterial substance that can be applied in orthopaedics. In this study, the biocompatibility of this biomaterial was assessed using an in vitro technique. The cytotoxicity and genotoxicity effect of HA2 and HA3 against L929 fibroblast cell was evaluated using the MTT Assay and Alkaline Comet Assay respectively. Both HA2 and HA3 compound showed low cytotoxicity effect as determined using MTT Assay. Cells viability following 72 hours incubation at maximum concentration of both HA2 and HA3 (200 mg/ml) were 75.3 +/- 8.8% and 86.7 +/- 13.1% respectively. However, the cytotoxicity effect of ZnSO4.7H2O as a positive control showed an IC50 values of 46 mg/ml (160 microM). On the other hand, both HA2 and HA3 compound showed a slight genotoxicity effect as determined using the Alkaline Comet Assay following incubation at the concentration 200 mg/ml for 72 hours. This assay has been widely used in genetic toxicology to detect DNA strand breaks and alkali-labile site. The percentage of the cells with DNA damage for both substance was 27.7 +/- 1.3% and 15.6 +/- 1.0% for HA2 and HA3 respectively. Incubation of the cells for 24 hours with 38 microg/ml (IC25) of positive control showed an increase in percentage of cells with DNA damage (67.5 +/- 0.7%). In conclusion, our study indicated that both hydroxyapatite compounds showed a good biocompatibility in fibroblast cells.
    Matched MeSH terms: Bone Substitutes/toxicity*
  11. Pohchi A, Suzina AH, Samsudin AR, Al-Salihi KA
    Med J Malaysia, 2004 May;59 Suppl B:151-2.
    PMID: 15468863
    This in vivo study revealed that porous hydroxyapatite (PHA) and dense hydroxyapatite (DHA) are good implant materials that can accelerate bone healing and resorbed in acceptable time. But there were differences in the mechanism of the resorption of DHA and PHA due to variability in the physical properties and osteogenicity.
    Matched MeSH terms: Bone Substitutes/analysis*
  12. Kannan TP, Nik Ahmad Shah NL, Azlina A, Samsudin AR, Narazah MY, Salleh M
    Med J Malaysia, 2004 May;59 Suppl B:168-9.
    PMID: 15468871
    The present study is aimed at finding the mutagenicity and cytotoxicity of dense form of synthetic hydroxyapatite (Source: School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia) in the blood of sheep. The biomaterial was implanted in the tibia of Malin, an indigenous sheep breed of Malaysia. Blood was collected from the sheep before implantation of the biomaterial, cultured and a karyological study was made. Six weeks after implantation, blood was collected from the same animal, cultured and screened for chromosome aberrations. The mitotic indices and karyological analysis indicated that the implantation of synthetic hydroxyapatite (dense form) did not produce any cytotoxicity or chromosome aberrations in the blood of sheep.
    Matched MeSH terms: Bone Substitutes/toxicity*
  13. Hassan MH
    Med J Malaysia, 2004 May;59 Suppl B:164-5.
    PMID: 15468869
    There has been, and is still, concern about the high elastic modulus of Ti alloys compared to bone. Any reduction in the Young's modulus value of the implant is expected to enhance stress redistribution to the adjacent bone tissues, minimize stress shielding and eventually prolong device lifetime. Dynamic Monte Carlo simulation is used to predict the gradual reduction in Young's modulus values between the bulk of Ti alloys and the modified surface layers due to Ca ion implantation. The simulation can be used as a screening step when applying new alloys and/or coatings.
    Matched MeSH terms: Bone Substitutes/analysis*
  14. Jalila A, Redig PT, Wallace LJ, Ogema TR, Bechtold JE, Kidder L
    Med J Malaysia, 2004 May;59 Suppl B:125-6.
    PMID: 15468850
    Avian demineralized bone matrix (ADBM) powder prepared from chicken, pigeon, and turkey sources induced bone formation via endochondral and intramembranous processes, as in mammalian studies. There were no significant differences in percentage of new bone, percentage of cartilage, surface-forming osteoblast area, or osteoclast count between gaps treated with chicken, pigeon, and turkey DBM. However, there was a significantly (p<0.05) higher percentage of inflammatory area in gaps treated with chicken DBM than in gaps treated with pigeon DBM.
    Matched MeSH terms: Bone Substitutes*
  15. Khadijah K, Mashita M, Saidu MF, Fazilah F, Khalid KA
    Med J Malaysia, 2004 May;59 Suppl B:123-4.
    PMID: 15468849
    This study is to qualitatively evaluate a locally produced hydroxyapatite (HA), made by AMREC-SIRIM in an experimental animal bone defect using New Zealand White (NZW) rabbits. HA cylindrical blocks measuring 2.5 mm (D) x 1.0 mm (H) were implanted in the rabbits' left tibia. The tibias were harvested within one to three weeks post-implantation. The implantion site was cut into thin undecalcified sections of about 30 microm to 60 microm and stained with Toluidine Blue and Goldner's Masson Trichrome. Microscopic examinations using standard light microscopy of these slides were performed.
    Matched MeSH terms: Bone Substitutes*
  16. Najafpour HD, Suzina AH, Nizam A, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:121-2.
    PMID: 15468848
    There was a significant increased in Absolute Contact Length measurements of endosteal bone growth along the Nickel-Titanium (NiTi) implant coated with the natural coral powder and Hydroxyapatite (HA) compared to the non-calcium coated implants. This study demonstrated that coated implants seemed to show earlier and higher osseointergration phenomena compared to non coated ones. Furthermore, there was significantly greater bone-to-implant contact at the apical 1/3rd of the coated implants.
    Matched MeSH terms: Bone Substitutes*
  17. Rosdan S, Al-Salihi KA, Suzina AH, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:111-2.
    PMID: 15468843
    The main objective of the study was to determine the biodegradability, resorption and osteoconductivity potency of coral implant. Coral blocks (CORAGRAF) were prepared from sea coral Porites species. The blocks were implanted in the right mandible of rabbit model. Implants were harvested at 2 and 4 weeks intervals and subjected for light and scanning electron microscopy. Dense hydroxyapatite (DHA) was implanted in the left mandible as a control. The results of this study demonstrated that CORAGRAF is a good implant material that can accelerates bone healing and be resorbed in an acceptable time. The mechanisms of the resorption seemed to be the same (crumbling process), a first step where the edge of the coral become powdery then a second step which could be phagocytosis and dissolution in extracellular fluid.
    Matched MeSH terms: Bone Substitutes*
  18. Shaari R, Samsudin AR
    Med J Malaysia, 2004 May;59 Suppl B:109-10.
    PMID: 15468842
    The present in vitro evaluation indicated that the value added hydroxyapatite (HA) was more toxic than pure HA but the toxicity of value added HA was slight compared to the positive control. In this testing, the conclusion can be made that value added HA is less biocompatible than commercialized pure HA. This toxicity may be caused by both the particle size and degradation (leaching). Further studies should be carried out to determine whether there is particle size effect or leaching effect when using powder as compared to the block materials. The in vivo evaluation should be done to assess the reaction to this value added HA as compared to the pure HA.
    Matched MeSH terms: Bone Substitutes/toxicity*
  19. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Bone Substitutes/pharmacology*
  20. Doreya MI, Mona EW, Afaf ES, Hanan HB
    Med J Malaysia, 2004 May;59 Suppl B:21-2.
    PMID: 15468799
    The standard bioglass composition GS45 as well as with excess silica GS50 or with the addition of 5% titanium oxide GS45+Ti5, were prepared by the polymeric route. The different glass components were added to the formed polymer. Firing at 700 degrees C gave an amorphous product with microporous texture that readily crystallizes out at 900 degrees C. The prepared materials were highly porous with two modes of pore system micro-pores and macro-pores with a size ranging between 100 microm to 0.006 microm and a porosity reaching 73%. The measured bulk density was between 0.36 to 1.1g/cm3. The fired material preserved the former structure of the polymer precursor. Biocompatibility was verified in vitro and vivo. IR of the specimens previously immersed in SBF revealed the formation of apatite like layer. While the histology sections of implants in rate femurs showed new bone tissue or bone trabeculae after 21 days.
    Matched MeSH terms: Bone Substitutes/chemical synthesis*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links