Displaying publications 21 - 40 of 1460 in total

Abstract:
Sort:
  1. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN
    Acta Neurochir (Wien), 2004 Jun;146(6):595-601.
    PMID: 15168228
    Alteration of the tumor suppressor gene p53 is considered to be a critical step in the development of human cancer. Changes in this gene have been detected in a wide range of human tumours, including gliomas. In glioma, the presence of p53 gene alterations has been associated with worse prognosis.
    Matched MeSH terms: Brain Neoplasms/diagnosis; Brain Neoplasms/genetics*; Brain Neoplasms/surgery
  2. Iaccarino C, Kolias A, Adelson PD, Rubiano AM, Viaroli E, Buki A, et al.
    Acta Neurochir (Wien), 2021 02;163(2):423-440.
    PMID: 33354733 DOI: 10.1007/s00701-020-04663-5
    BACKGROUND: Due to the lack of high-quality evidence which has hindered the development of evidence-based guidelines, there is a need to provide general guidance on cranioplasty (CP) following traumatic brain injury (TBI), as well as identify areas of ongoing uncertainty via a consensus-based approach.

    METHODS: The international consensus meeting on post-traumatic CP was held during the International Conference on Recent Advances in Neurotraumatology (ICRAN), in Naples, Italy, in June 2018. This meeting was endorsed by the Neurotrauma Committee of the World Federation of Neurosurgical Societies (WFNS), the NIHR Global Health Research Group on Neurotrauma, and several other neurotrauma organizations. Discussions and voting were organized around 5 pre-specified themes: (1) indications and technique, (2) materials, (3) timing, (4) hydrocephalus, and (5) paediatric CP.

    RESULTS: The participants discussed published evidence on each topic and proposed consensus statements, which were subject to ratification using anonymous real-time voting. Statements required an agreement threshold of more than 70% for inclusion in the final recommendations.

    CONCLUSIONS: This document is the first set of practical consensus-based clinical recommendations on post-traumatic CP, focusing on timing, materials, complications, and surgical procedures. Future research directions are also presented.

    Matched MeSH terms: Brain Injuries, Traumatic/surgery*
  3. Hutchinson PJ, Kolias AG, Tajsic T, Adeleye A, Aklilu AT, Apriawan T, et al.
    Acta Neurochir (Wien), 2019 Jul;161(7):1261-1274.
    PMID: 31134383 DOI: 10.1007/s00701-019-03936-y
    BACKGROUND: Two randomised trials assessing the effectiveness of decompressive craniectomy (DC) following traumatic brain injury (TBI) were published in recent years: DECRA in 2011 and RESCUEicp in 2016. As the results have generated debate amongst clinicians and researchers working in the field of TBI worldwide, it was felt necessary to provide general guidance on the use of DC following TBI and identify areas of ongoing uncertainty via a consensus-based approach.

    METHODS: The International Consensus Meeting on the Role of Decompressive Craniectomy in the Management of Traumatic Brain Injury took place in Cambridge, UK, on the 28th and 29th September 2017. The meeting was jointly organised by the World Federation of Neurosurgical Societies (WFNS), AO/Global Neuro and the NIHR Global Health Research Group on Neurotrauma. Discussions and voting were organised around six pre-specified themes: (1) primary DC for mass lesions, (2) secondary DC for intracranial hypertension, (3) peri-operative care, (4) surgical technique, (5) cranial reconstruction and (6) DC in low- and middle-income countries.

    RESULTS: The invited participants discussed existing published evidence and proposed consensus statements. Statements required an agreement threshold of more than 70% by blinded voting for approval.

    CONCLUSIONS: In this manuscript, we present the final consensus-based recommendations. We have also identified areas of uncertainty, where further research is required, including the role of primary DC, the role of hinge craniotomy and the optimal timing and material for skull reconstruction.

    Matched MeSH terms: Brain Injuries, Traumatic/complications; Brain Injuries, Traumatic/surgery*
  4. Truelle JL, von Wild K, Höfer S, Neugebauer E, Lischetzke T, von Steinbüchel N, et al.
    Acta Neurochir. Suppl., 2008;101:125-9.
    PMID: 18642646
    There is no disease-specific health-related quality of life (HRQoL) tool devoted to traumatic brain injury (TBI).
    Matched MeSH terms: Brain Injuries/epidemiology*; Brain Injuries/psychology*
  5. Tran AT, Nguyen HA, Vu DL, Pham MT, Tran C, Le HK, et al.
    Acta Neurol Belg, 2020 Feb;120(1):99-105.
    PMID: 31679149 DOI: 10.1007/s13760-019-01223-2
    Mechanical thrombectomy (MT) has been demonstrated as an effective treatment for acute ischemic stroke (AIS), thanks to large vessel occlusion (LVO), especially in case of anterior cerebral artery with many randomized clinical trials (RCTs) every year. On the other hand, there is a limited number of basilar artery occlusion (BAO)-related studies which have been conducted. The fact prompts our range of case studies, which furnish BAO understanding with our experience, results and some prognosis factors of MT. This retrospective and single-center study was conducted on 22 patients who were diagnosed with BAO and underwent the treatment of MT from October 2012 to January 2018. Clinical feature such as radiological imaging, procedure complications, and intracranial hemorrhage were all documented and evaluated. All the studies' results based on performance using modified Rankin scale score (mRS) and mortality at 90 days. The results from these BAO patients study indicated that the posterior circulation Acute Stroke Prognosis Early CT Score (pcASPECTS) recorded before the intervention was 7.7 ± 1.6, while the admission National Institutes of Health Stroke Scale (NIHSS) was 17.5 ± 5.4. 15/22 cases achieved successful recanalization (TICI, Thrombolysis in Cerebral Infarction scale, of 2b-3), accounting for 68.2%. The results highlighted 50% of the favorable outcome (mRS 0-2) occupying 11 out of 22 patients in total and the overall mortality was 36.4%. The intracranial hemorrhagic complication was detected in three cases (13.6%). Placing in juxtaposition the poor-outcome group and the favorable-outcome group, we could witness statistically significant difference (P 
    Matched MeSH terms: Brain Infarction/complications; Brain Infarction/mortality; Brain Infarction/therapy*
  6. Pratap-Chand R, Sinniah M, Salem FA
    Acta Neurol. Scand., 1988 Sep;78(3):185-9.
    PMID: 3227804
    Cognitive impairment has been reported to occur in minor head injury (concussion). The value of the P300 evoked potential as a measure of cerebral concussion was studied in 20 patients with minor head injury and compared with the data from 20 normal subjects. Significant abnormalities of the P300 latency and amplitude were noted in these patients in the post-concussion period. The abnormalities improved completely on repeat testing. The correlation of the P300 to other parameters of head injury is discussed. The P300 constitutes a simple laboratory test that is sensitive measure of cerebral dysfunction in concussive head injuries.
    Matched MeSH terms: Brain Concussion/physiopathology*
  7. Sen DK, Sivanesaratnam V, Chuah CY, Ch'ng SL, Singh J, Paramsothy M
    Acta Obstet Gynecol Scand, 1987;66(5):425-8.
    PMID: 3425244
    Of 36 cases of choriocarcinoma treated at the University Hospital Kuala Lumpur during 1980-84 inclusive, 6 patients were found to have cerebral metastases. Intrathecal methotrexate and combination chemotherapy were started in all cases, with monitoring of tumor growth by serial beta-HCG assays and CT scanning of brain and lung. Chemotherapy was reduced because of severe toxicity in 2 patients, one of whom received radiotherapy to the brain. Four patients (66%) have now been in remission for 2.5-6 years. Two did not respond to therapy and died. The factors involved in therapy and response are discussed.
    Matched MeSH terms: Brain Neoplasms/drug therapy; Brain Neoplasms/mortality; Brain Neoplasms/secondary*
  8. Goh AY, Mok Q
    Acta Paediatr, 2004 Jan;93(1):47-52.
    PMID: 14989439
    AIM: To study the aetiology and clinical course of children with brainstem death in a paediatric intensive care unit (ICU) and to determine whether current the practices that are used to declare brainstem death conform to accepted criteria.
    METHODS: A retrospective review chart of all patients with brainstem death (n = 31) admitted to the paediatric ICU between January 1995 and December 1998 was drawn up.
    RESULTS: Mean age of the patients was 51.9 +/- 54.5 mo with the main diagnoses being head trauma in 11 children, anoxic encephalopathy in 7, brain tumour in 5, drowning in 4, CNS haemorrhage in 3 and CNS infection in 1 child; 32.3% of the children were given pre-ICU admission cardiopulmonary resuscitation. The average time from insult to suspected brainstem death was 27 h and suspected brainstem death to confirmation was 25 h, with an average of 1.6 examinations performed. EEG was done in 14 patients, with electrocerebral silence in 8 after the first examination and in a further 5 after repeat testing. Cerebral blood-flow scans were done in 3 children and evoked potentials in 1 child.
    CONCLUSIONS: Trauma remains the most common primary diagnosis leading to brainstem death. Intensivists in this large hospital for children mainly conform to accepted guidelines for determination of brainstem death although there is a wider use of ancillary tests to aid diagnosis. The study also showed a low rate of < 10% of organ procurement for transplantation.

    Study site: Paediatric ICU, Great Ormond Street Hospital, London, United Kingdom
    Matched MeSH terms: Brain Death/physiopathology*
  9. Siddiqui R, Ali IK, Cope JR, Khan NA
    Acta Trop, 2016 Dec;164:375-394.
    PMID: 27616699 DOI: 10.1016/j.actatropica.2016.09.009
    Naegleria fowleri is a protist pathogen that can cause lethal brain infection. Despite decades of research, the mortality rate related with primary amoebic meningoencephalitis owing to N. fowleri remains more than 90%. The amoebae pass through the nose to enter the central nervous system killing the host within days, making it one of the deadliest opportunistic parasites. Accordingly, we present an up to date review of the biology and pathogenesis of N. fowleri and discuss needs for future research against this fatal infection.
    Matched MeSH terms: Brain/pathology
  10. Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, et al.
    Acta Trop, 2023 Mar;239:106824.
    PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824
    Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
    Matched MeSH terms: Brain
  11. Yusof SR, Mohd Uzid M, Teh EH, Hanapi NA, Mohideen M, Mohamad Arshad AS, et al.
    Addict Biol, 2019 09;24(5):935-945.
    PMID: 30088322 DOI: 10.1111/adb.12661
    Mitragyna speciosa is reported to be beneficial for the management of chronic pain and opioid withdrawal in the evolving opioid epidemic. Data on the blood-brain barrier (BBB) transport of mitragynine and 7-hydroxymitragynine, the active compounds of the plant, are still lacking and inconclusive. Here, we present for the first time the rate and the extent of mitragynine and 7-hydroxymitragynine transport across the BBB, with an investigation of their post-BBB intra-brain distribution. We utilized an in vitro BBB model to study the rate of BBB permeation of the compounds and their interaction with efflux transporter P-glycoprotein (P-gp). Mitragynine showed higher apical-to-basolateral (A-B, i.e. blood-to-brain side) permeability than 7-hydroxymitragynine. 7-Hydroxymitragynine showed a tendency to efflux, with efflux ratio (B-A/A-B) of 1.39. Both were found to inhibit the P-gp and are also subject to efflux by the P-gp. Assessment of the extent of BBB transport in vivo in rats from unbound brain to plasma concentration ratios (Kp,uu,brain ) revealed extensive efflux of both compounds, with less than 10 percent of unbound mitragynine and 7-hydroxymitragynine in plasma crossing the BBB. By contrast, the extent of intra-brain distribution was significantly different, with mitragynine having 18-fold higher brain tissue uptake in brain slice assay compared with 7-hydroxymitragynine. Mitragynine showed a moderate capacity to accumulate inside brain parenchymal cells, while 7-hydroxymitragynine showed restricted cellular barrier transport. The presented findings from this systematic investigation of brain pharmacokinetics of mitragynine and 7-hydroxymitragynine are essential for design and interpretation of in vivo experiments aiming to establish exposure-response relationship.
    Matched MeSH terms: Blood-Brain Barrier/metabolism*; Brain/blood supply; Brain/metabolism
  12. Loganathan K, Ho ETW
    Addict Behav, 2021 05;116:106816.
    PMID: 33453587 DOI: 10.1016/j.addbeh.2021.106816
    Over the years, various models have been proposed to explain the psychology and biology of drug addiction, built primarily around the habit and compulsion models. Recent research indicates drug addiction may be goal-directed, motivated by excessive valuation of drugs. Drug consumption may initially occur for the sake of pleasure but may transition to a means of escaping withdrawal, stress and negative emotions. In this hypothetical paper, we propose a value-based neurobiological model for drug addiction. We posit that during dependency, the value-based decision-making system in the brain is not inactive but has instead prioritized drugs as the reward of choice. In support of this model, we consider the role of valuation in choice, its influence on pleasure and punishment, and how valuation is contrasted in impulsive and compulsive behaviours. We then discuss the neurobiology of value, beginning with the dopaminergic system and its relationship with incentive salience before moving to brain-wide networks involved in valuation, control and prospection. These value-based neurobiological components are then integrated into the cycle of addiction as we consider the development of drug dependency from a valuation perspective. We conclude with a discussion of cognitive interventions utilizing value-based decision-making, highlighting not just advances in recalibrating the valuation system to focus on non-drug rewards, but also areas for improvement in refining this approach.
    Matched MeSH terms: Brain
  13. Au A
    Adv Clin Chem, 2018 03 08;85:31-69.
    PMID: 29655461 DOI: 10.1016/bs.acc.2018.02.002
    Ischemic stroke is a sudden loss of brain function due to the reduction of blood flow. Brain tissues cease to function with subsequent activation of the ischemic cascade. Metabolomics and lipidomics are modern disciplines that characterize the metabolites and lipid components of a biological system, respectively. Because the pathogenesis of ischemic stroke is heterogeneous and multifactorial, it is crucial to establish comprehensive metabolomic and lipidomic approaches to elucidate these alterations in this disease. Fortunately, metabolomic and lipidomic studies have the distinct advantages of identifying tissue/mechanism-specific biomarkers, predicting treatment and clinical outcome, and improving our understanding of the pathophysiologic basis of disease states. Therefore, recent applications of these analytical approaches in the early diagnosis of ischemic stroke were discussed. In addition, the emerging roles of metabolomics and lipidomics on ischemic stroke were summarized, in order to gain new insights into the mechanisms underlying ischemic stroke and in the search for novel metabolite biomarkers and their related pathways.
    Matched MeSH terms: Brain/metabolism*; Brain/pathology; Brain Ischemia/metabolism*; Brain Ischemia/pathology
  14. Nisar H, Malik AS, Ullah R, Shim SO, Bawakid A, Khan MB, et al.
    Adv Exp Med Biol, 2015;823:159-74.
    PMID: 25381107 DOI: 10.1007/978-3-319-10984-8_9
    The fundamental step in brain research deals with recording electroencephalogram (EEG) signals and then investigating the recorded signals quantitatively. Topographic EEG (visual spatial representation of EEG signal) is commonly referred to as brain topomaps or brain EEG maps. In this chapter, full search full search block motion estimation algorithm has been employed to track the brain activity in brain topomaps to understand the mechanism of brain wiring. The behavior of EEG topomaps is examined throughout a particular brain activation with respect to time. Motion vectors are used to track the brain activation over the scalp during the activation period. Using motion estimation it is possible to track the path from the starting point of activation to the final point of activation. Thus it is possible to track the path of a signal across various lobes.
    Matched MeSH terms: Brain/physiology*; Brain Mapping
  15. Hema CR, Paulraj MP, Yaacob S, Adom AH, Nagarajan R
    Adv Exp Med Biol, 2011;696:565-72.
    PMID: 21431597 DOI: 10.1007/978-1-4419-7046-6_57
    A brain machine interface (BMI) design for controlling the navigation of a power wheelchair is proposed. Real-time experiments with four able bodied subjects are carried out using the BMI-controlled wheelchair. The BMI is based on only two electrodes and operated by motor imagery of four states. A recurrent neural classifier is proposed for the classification of the four mental states. The real-time experiment results of four subjects are reported and problems emerging from asynchronous control are discussed.
    Matched MeSH terms: Brain/physiology
  16. Asaduzzaman K, Reaz MB, Mohd-Yasin F, Sim KS, Hussain MS
    Adv Exp Med Biol, 2010;680:593-9.
    PMID: 20865544 DOI: 10.1007/978-1-4419-5913-3_65
    Electroencephalogram (EEG) serves as an extremely valuable tool for clinicians and researchers to study the activity of the brain in a non-invasive manner. It has long been used for the diagnosis of various central nervous system disorders like seizures, epilepsy, and brain damage and for categorizing sleep stages in patients. The artifacts caused by various factors such as Electrooculogram (EOG), eye blink, and Electromyogram (EMG) in EEG signal increases the difficulty in analyzing them. Discrete wavelet transform has been applied in this research for removing noise from the EEG signal. The effectiveness of the noise removal is quantitatively measured using Root Mean Square (RMS) Difference. This paper reports on the effectiveness of wavelet transform applied to the EEG signal as a means of removing noise to retrieve important information related to both healthy and epileptic patients. Wavelet-based noise removal on the EEG signal of both healthy and epileptic subjects was performed using four discrete wavelet functions. With the appropriate choice of the wavelet function (WF), it is possible to remove noise effectively to analyze EEG significantly. Result of this study shows that WF Daubechies 8 (db8) provides the best noise removal from the raw EEG signal of healthy patients, while WF orthogonal Meyer does the same for epileptic patients. This algorithm is intended for FPGA implementation of portable biomedical equipments to detect different brain state in different circumstances.
    Matched MeSH terms: Brain/physiology; Brain/physiopathology
  17. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Brain/drug effects*; Brain/metabolism
  18. Swamy M, Norlina W, Azman W, Suhaili D, Sirajudeen KN, Mustapha Z, et al.
    PMID: 25435633
    BACKGROUND: Propolis has been proposed to be protective on neurodegenerative disorders. To understand the neuroprotective effects of honeybee propolis, glutamine synthetase (GS) activity, nitric oxide (NO), thiobarbituric acid reactive substances (TBARS) and total antioxidant status (TAS) were studied in different brain regions-cerebral cortex (CC), cerebellum (CB) and brain stem (BS) of rats supplemented with propolis and subjected to kainic acid (KA) mediated excitotoxicity.

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups; Control group and KA group received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150mg/kg body weight), five times every 12 hours. KA group and propolis + KA group were injected subcutaneously with kainic acid (15mg/kg body weight) and were sacrificed after 2 hrs and CC, CB and BS were separated homogenized and used for estimation of GS activity, NO, TBARS, and TAS concentrations by colorimetric methods. Results were analyzed by one-way ANOVA, reported as mean + SD from 6 animals, and p<0.05 considered statistically significant.

    RESULTS: NO was increased (p< 0.001) and GS activity was decreased (p< 0.001) in KA treated group compared to control group as well as propolis + KA treated group. TBARS was decreased and TAS was increased (p< 0.001) in propolis + KA treated group compared KA treated group.

    CONCLUSION: This study clearly demonstrated the restoration of GS activity, NO levels and decreased oxidative stress by propolis in kainic acid mediated excitotoxicity. Hence the propolis can be a possible potential candidate (protective agent) against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Brain/drug effects*; Brain/enzymology; Brain/metabolism
  19. Manan HA, Franz EA, Yusoff AN, Mukari SZ
    Aging Clin Exp Res, 2015 Feb;27(1):27-36.
    PMID: 24906677 DOI: 10.1007/s40520-014-0240-0
    In the present study, brain activation associated with speech perception processing was examined across four groups of adult participants with age ranges between 20 and 65 years, using functional MRI (fMRI). Cognitive performance demonstrates that performance accuracy declines with age. fMRI results reveal that all four groups of participants activated the same brain areas. The same brain activation pattern was found in all activated areas (except for the right superior temporal gyrus and right middle temporal gyrus); brain activity was increased from group 1 (20-29 years) to group 2 (30-39 years). However, it decreased in group 3 (40-49 years) with further decreases in group 4 participants (50-65 years). Result also reveals that three brain areas (superior temporal gyrus, Heschl's gyrus and cerebellum) showed changes in brain laterality in the older participants, akin to a shift from left-lateralized to right-lateralized activity. The onset of this change was different across brain areas. Based on these findings we suggest that, whereas all four groups of participants used the same areas in processing, the engagement and recruitment of those areas differ with age as the brain grows older. Findings are discussed in the context of corroborating evidence of neural changes with age.
    Matched MeSH terms: Brain/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links