Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Jothy SL, Aziz A, Chen Y, Sasidharan S
    PMID: 23243455 DOI: 10.1155/2012/561284
    In the present study, in vitro antioxidant, free radical scavenging capacity, and hepatoprotective activity of methanol extracts from Polyalthia longifolia and Cassia spectabilis were evaluated using established in vitro models such as ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH(•)), hydroxyl radical (OH(•)), nitric oxide radical (NO(•)) scavenging, metal chelating, and antilipidperoxidation activities. Interestingly, all the extracts showed considerable in vitro antioxidant and free radical scavenging activities in a dose-dependent manner when compared to the standard antioxidant which verified the presence of strong antioxidant compound in leaf extracts tested. Phenolic and flavonoid content of these extracts is significantly correlated with antioxidant capacity. Since P. longifolia extract was exhibited better in vitro antioxidant activities, it was subjected for in vivo hepatoprotective activity in paracetamol-intoxicated mice. Therapy of P. longifolia showed the liver protective effect on biochemical and histopathological alterations. Moreover, histological studies also supported the biochemical finding, that is, the maximum improvement in the histoarchitecture of the liver. Results revealed that P. longifolia leaf extract could protect the liver against paracetamol-induced oxidative damage by possibly increasing the antioxidant protection mechanism in mice. Our findings indicated that P. longifolia and C. spectabilis have potential as good sources of natural antioxidant/antiaging compounds.
    Matched MeSH terms: Cassia
  2. Torey A, Sasidharan S, Yeng C, Latha LY
    Molecules, 2010 May 10;15(5):3411-20.
    PMID: 20657490 DOI: 10.3390/molecules15053411
    Quality control standardizations of the various medicinal plants used in traditional medicine is becoming more important today in view of the commercialization of formulations based on these plants. An attempt at standardization of Cassia spectabilis leaf has been carried out with respect to authenticity, assay and chemical constituent analysis. The authentication involved many parameters, including gross morphology, microscopy of the leaves and functional group analysis by Fourier Transform Infrared (FTIR) spectroscopy. The assay part of standardization involved determination of the minimum inhibitory concentration (MIC) of the extract which could help assess the chemical effects and establish curative values. The MIC of the C. spectabilis leaf extracts was investigated using the Broth Dilution Method. The extracts showed a MIC value of 6.25 mg/mL, independent of the extraction time. The chemical constituent aspect of standardization involves quantification of the main chemical components in C. spectabilis. The GCMS method used for quantification of 2,4-(1H,3H)-pyrimidinedione in the extract was rapid, accurate, precise, linear (R(2) = 0.8685), rugged and robust. Hence this method was suitable for quantification of this component in C. spectabilis. The standardization of C. spectabilis is needed to facilitate marketing of medicinal plants, with a view to promoting the export of valuable Malaysian Traditional Medicinal plants such as C. spectabilis.
    Matched MeSH terms: Cassia/chemistry*
  3. Sangetha S, Zuraini Z, Suryani S, Sasidharan S
    Micron, 2009 Jun;40(4):439-43.
    PMID: 19261482 DOI: 10.1016/j.micron.2009.01.003
    The inhibitory effect of Cassia spectabilis methanol leaf extract was evaluated against biofilm forming Candida albicans, which was sensitive to 6.25 mg/ml concentration of the extract. Transmission (TEM) and scanning electron microscope (SEM) observations were used to study the anticandidal activity and prevention of biofilm formation by the C. spectabilis extract. SEM analysis further revealed reduction in C. albicans biofilm in response to the extract. The main abnormalities noted via TEM study was the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The significant antifungal activity shown by this methanol extract of C. spectabilis suggests its potential against infections caused by C. albicans.
    Matched MeSH terms: Cassia/chemistry*
  4. Sangetha S, Zuraini Z, Sasidharan S, Suryani S
    Nihon Ishinkin Gakkai Zasshi, 2008;49(4):299-304.
    PMID: 19001757
    The fungicidal activity of Cassia spectabilis leaf extracts was investigated using the disk diffusion technique and the broth dilution method. The extract showed a favorable antimicrobial activity against Candida albicans with a minimum inhibition concentration(MIC) value of 6.25 mg / ml. Apart from the fungicidal effects, imaging using scanning electron microscopy (SEM) was done to determine the major alterations in the microstructure of the C. albicans. The main abnormalities noted in the SEM studies were the alterations in morphology and complete collapse of the yeast cells after 36 h of exposure to the extract. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 5-fold decrease in Candida in kidneys and blood samples in the groups of animals treated with the extract (2.5 g / kg body weight). In an acute toxicity study using mice, the acute minimum fatal dose of the extract was greater than 2000 mg / kg, and we found no histopathological changes in macroscopic examination by necropsy of mice treated with extract. We conclude that the extract may be safely used as an anticandidal agent.
    Matched MeSH terms: Cassia*
  5. Azman NAN, Alhawarri MB, Rawa MSA, Dianita R, Gazzali AM, Nogawa T, et al.
    Molecules, 2020 Oct 04;25(19).
    PMID: 33020403 DOI: 10.3390/molecules25194545
    Seventeen methanol extracts from different plant parts of five different Cassia species, including C. timorensis, C. grandis, C. fistula, C. spectabilis, and C. alata were screened against acetylcholinesterase (AChE). C. timorensis extracts were found to exhibit the highest inhibition towards AChE whereby the leaf, stem, and flower methanol extracts showed 94-97% inhibition. As far as we are aware, C. timorensis is one of the least explored Cassia spp. for bioactivity. Further fractionation led to the identification of six compounds, isolated for the first time from C. timorensis: 3-methoxyquercetin (1), benzenepropanoic acid (2), 9,12,15-octadecatrienoic acid (3), β-sitosterol (4), stigmasterol (5), and 1-octadecanol (6). Compound 1 showed moderate inhibition towards AChE (IC50: 83.71 μM), while the other compounds exhibited poor to slightly moderate AChE inhibitory activity. Molecular docking revealed that the methoxy substitution of 1 formed a hydrogen bond with TYR121 at the peripheral anionic site (PAS) and the hydroxyl group at C5 formed a covalent hydrogen bond with ASP72. Additionally, the OH group at the C3' position formed an interaction with the protein at the acyl pocket (PHE288). This possibly explains the activity of 1 in blocking the entry of acetylcholine (ACh, the neurotransmitter), thus impeding the hydrolysis of ACh.
    Matched MeSH terms: Cassia/chemistry*
  6. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
    Matched MeSH terms: Cassia/chemistry*
  7. Paudel P, Seong SH, Fauzi FM, Bender A, Jung HA, Choi JS
    ACS Omega, 2020 Apr 07;5(13):7705-7715.
    PMID: 32280914 DOI: 10.1021/acsomega.0c00684
    The present study examines the effect of human monoamine oxidase active anthraquinones emodin, alaternin (=7-hydroxyemodin), aloe-emodin, and questin from Cassia obtusifolia Linn seeds in modulating human dopamine (hD1R, hD3R, and hD4R), serotonin (h5-HT1AR), and vasopressin (hV1AR) receptors that were predicted as prime targets from proteocheminformatics modeling via in vitro cell-based functional assays, and explores the possible mechanisms of action via in silico modeling. Emodin and alaternin showed a concentration-dependent agonist effect on hD3R with EC50 values of 21.85 ± 2.66 and 56.85 ± 4.59 μM, respectively. On hV1AR, emodin and alaternin showed an antagonist effect with IC50 values of 10.25 ± 1.97 and 11.51 ± 1.08 μM, respectively. Interestingly, questin and aloe-emodin did not have any observable effect on hV1AR. Only alaternin was effective in antagonizing h5-HT1AR (IC50: 84.23 ± 4.12 μM). In silico studies revealed that a hydroxyl group at C1, C3, and C8 and a methyl group at C6 of anthraquinone structure are essential for hD3R agonist and hV1AR antagonist effects, as well as for the H-bond interaction of 1-OH group with Ser192 at a proximity of 2.0 Å. Thus, based on in silico and in vitro results, hV1AR, hD3R, and h5-HT1AR appear to be prime targets of the tested anthraquinones.
    Matched MeSH terms: Cassia
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links