Displaying publications 21 - 40 of 230 in total

Abstract:
Sort:
  1. Duan X, Gu H, Lam SS, Sonne C, Lu W, Li H, et al.
    Chemosphere, 2024 Feb;349:140821.
    PMID: 38042424 DOI: 10.1016/j.chemosphere.2023.140821
    The rapid growth of population and economy has led to an increase in urban air pollutants, greenhouse gases, energy shortages, environmental degradation, and species extinction, all of which affect ecosystems, biodiversity, and human health. Atmospheric pollution sources are divided into direct and indirect pollutants. Through analysis of the sources of pollutants, the self-functioning of different plants can be utilized to purify the air quality more effectively. Here, we explore the absorption of greenhouse gases and particulate matter in cities as well as the reduction of urban temperatures by plants based on international scientific literature on plant air pollution mitigation, according to the adsorption, dust retention, and transpiration functions of plants. At the same time, it can also reduce the occurrence of extreme weather. It is necessary to select suitable tree species for planting according to different plant functions and environmental needs. In the context of tight urban land use, the combination of vertical greening and urban architecture, through the rational use of plants, has comprehensively addressed urban air pollution. In the future, in urban construction, attention should be paid to the use of heavy plants and the protection and development of green spaces. Our review provides necessary references for future urban planning and research.
    Matched MeSH terms: Cities
  2. Venkatraman G, Giribabu N, Mohan PS, Muttiah B, Govindarajan VK, Alagiri M, et al.
    Chemosphere, 2024 Mar;351:141227.
    PMID: 38253087 DOI: 10.1016/j.chemosphere.2024.141227
    Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
    Matched MeSH terms: Cities
  3. Liang Y, Ahmad Mohiddin MN, Bahauddin R, Hidayatul FO, Nazni WA, Lee HL, et al.
    Comput Math Methods Med, 2019;2019:1923479.
    PMID: 31481976 DOI: 10.1155/2019/1923479
    In this paper, we will start off by introducing the classical Ross-Macdonald model for vector-borne diseases which we use to describe the transmission of dengue between humans and Aedes mosquitoes in Shah Alam, which is a city and the state capital of Selangor, Malaysia. We will focus on analysing the effect of using the Mosquito Home System (MHS), which is an example of an autodissemination trap, in reducing the number of dengue cases by changing the Ross-Macdonald model. By using the national dengue data from Malaysia, we are able to estimate λ, which represents the initial growth rate of the dengue epidemic, and this allows us to estimate the number of mosquitoes in Malaysia. A mathematical expression is also constructed which allows us to estimate the potential number of breeding sites of Aedes mosquitoes. By using the data available from the MHS trial carried out in Section 15 of Shah Alam, we included the potential effect of the MHS into the dengue model and thus modelled the impact MHS has on the spread of dengue within the trial area. We then extended our results to analyse the effect of the MHSs on reducing the number of dengue cases in the whole of Malaysia. A new model was constructed with a basic reproduction number, R0,MalaMHS, which allows us to identify the required MHSs coverage needed to achieve extinction in Malaysia. Numerical simulations and tables of results were also produced to illustrate our results.
    Matched MeSH terms: Cities/epidemiology
  4. Abdul Aziz FAB, Abd Rahman N, Mohd Ali J
    Comput Intell Neurosci, 2019;2019:6252983.
    PMID: 31239836 DOI: 10.1155/2019/6252983
    Due to the rapid development of economy and society around the world, the most urban city is experiencing tropospheric ozone or commonly known as ground-level air pollutants. The concentration of air pollutants must be identified as an early precaution step by the local environmental or health agencies. This work aims to apply the artificial neural network (ANN) in estimating the ozone concentration forecast in Bangi. It consists of input variables such as temperature, relative humidity, concentration of nitrogen dioxide, time, UVA and UVB rays obtained from routine monitoring, and data recorded. Ten hidden layer is utilized to obtain the optimized ozone concentration, which is the output layer of the ANN framework. The finding showed that the meteorology condition and emission patterns play an important part in influencing the ozone concentration. However, a single network is sufficient enough to estimate the concentration despite any circumstances. Thus, it can be concluded that ANN is able to give reliable and satisfactory estimations of ozone concentration for the following day.
    Matched MeSH terms: Cities
  5. Xie D, Yin C
    Comput Intell Neurosci, 2022;2022:8965622.
    PMID: 35111216 DOI: 10.1155/2022/8965622
    Shaanxi is one of China's most important cradles of civilization. The main vein of Chinese culture is rich history and culture, and brilliant red culture embodies the essence of socialist core values. It is still relatively weak to deeply analyze the related research of Shaanxi Province's cultural province construction on the basis of studying the achievements of cultural development in foreign countries and China and combining with the reality of Shaanxi Province. In this paper, a BPNN (BP neural network) model is selected to study the comprehensive evaluation of tourism competitiveness of smart tourism cities, and the software is used to realize the simulation of the comprehensive evaluation system of tourism competitiveness of smart tourism cities, which more comprehensively and objectively reflects the level of comprehensive competitiveness of each city. It is believed that there are some problems in Shaanxi regional cultural communication, such as insufficient exploration of content resources, insufficient communication channels, and low audience awareness, hoping to provide ideas and reference for further exploring the promotion of cultural communication power.
    Matched MeSH terms: Cities
  6. Arora S, Sawaran Singh NS, Singh D, Rakesh Shrivastava R, Mathur T, Tiwari K, et al.
    Comput Intell Neurosci, 2022;2022:9755422.
    PMID: 36531923 DOI: 10.1155/2022/9755422
    In this study, the air quality index (AQI) of Indian cities of different tiers is predicted by using the vanilla recurrent neural network (RNN). AQI is used to measure the air quality of any region which is calculated on the basis of the concentration of ground-level ozone, particle pollution, carbon monoxide, and sulphur dioxide in air. Thus, the present air quality of an area is dependent on current weather conditions, vehicle traffic in that area, or anything that increases air pollution. Also, the current air quality is dependent on the climate conditions and industrialization in that area. Thus, the AQI is history-dependent. To capture this dependency, the memory property of fractional derivatives is exploited in this algorithm and the fractional gradient descent algorithm involving Caputo's derivative has been used in the backpropagation algorithm for training of the RNN. Due to the availability of a large amount of data and high computation support, deep neural networks are capable of giving state-of-the-art results in the time series prediction. But, in this study, the basic vanilla RNN has been chosen to check the effectiveness of fractional derivatives. The AQI and gases affecting AQI prediction results for different cities show that the proposed algorithm leads to higher accuracy. It has been observed that the results of the vanilla RNN with fractional derivatives are comparable to long short-term memory (LSTM).
    Matched MeSH terms: Cities
  7. Du J, Salim NAM, Zakaria WZW, Gu Y, Ling J
    Comput Intell Neurosci, 2022;2022:4971849.
    PMID: 35860639 DOI: 10.1155/2022/4971849
    In light of the ongoing occurrence of epidemics, the general populace frequently makes the decision to curtail their nomadic lifestyle in order to protect both their health and their safety. This has resulted in a number of issues, the most notable of which are the drop in the people's living happiness index and the poor business that the tourism industry has been experiencing as a result. Therefore, the idea of "cloud tourism" is undoubtedly the first candidate for the tourism industry, and in order to meet the requirements of cloud tourism, it is necessary to have an entirely new system to serve this, of which the scenic guide robot is an important part. At the same time, the quickening development of 5G technology offers solutions that may be put into practice for the multifurther IoT's expansion in smart cities. People will be able to experience the real outdoors without having to leave their homes, which will improve the people's well-being and alleviate the chilly status quo in the tourism industry. This is the plan, and it will be accomplished through the use of innovative guide robots that will make the experience more convenient and reliable.
    Matched MeSH terms: Cities
  8. Ramakreshnan L, Aghamohammadi N
    Curr Environ Health Rep, 2024 Mar;11(1):4-17.
    PMID: 38172471 DOI: 10.1007/s40572-023-00427-2
    PURPOSE OF REVIEW: Unprecedented urbanization in Asia affects the net radiation and energy flux of urban areas in the form of urban heat islands (UHI). The application of nature-based solutions (NbS) via urban green and blue infrastructures is a promising approach to mitigate UHI via urban boundary condition modifications, which affect the energy balance. This narrative review discusses the application of green and blue infrastructures in the Asian context by highlighting its progress, challenges, and recommendations. This review is descriptive in nature and includes perspectives on the discussed topics.

    RECENT FINDINGS: Studies on the application of green and blue infrastructures in UHI mitigation are still scant in Asia. Their cooling performance is greatly influenced by their types, size, geometry, surface roughness, spread (threshold distance), temporal scales, topography, pollution levels, prevailing climate, and assessment techniques. Distinct urban characteristics, climatic conditions, environmental risks, lack of awareness and expertise, lack of policy and government incentives, and limited scientific studies are the major challenges in their implementation of UHI mitigation in Asia. Although green and blue infrastructures are associated with urban cooling, more in-depth experimental work and multidisciplinary research collaboration are paramount to exploring its implementation potential in Asia and other countries that share similar urban and environmental characteristics.

    Matched MeSH terms: Cities
  9. Ghani NAM, Yusop FD, Kamarulzaman Y
    Data Brief, 2020 Oct;32:106302.
    PMID: 32995394 DOI: 10.1016/j.dib.2020.106302
    This dataset contains information of 375 respondents on green consumption behaviour. The questionnaire was developed using Theory of Planned Behaviour as the foundation. The variables available in the dataset are Environmental Concern (EC), Social Influence (SI), Perceived behavioural control (PBC), Consumer novelty seeking (CNS) and Green consumption behaviour (GC). In addition to the variables related to green consumption, the dataset also includes demographic and media preference information of the respondents. The data was collected via self-administered questionnaire in seven major cities in Klang Valley, namely Shah Alam, Bangsar, Petaling Jaya, Subang Jaya, Puchong, Serdang and Putrajaya. The dataset can have an important role for research in consumer behaviour towards developing green consumers.
    Matched MeSH terms: Cities
  10. Arifin MH, Kayode JS, Azahar MA, Jamil H, Sabri SFA
    Data Brief, 2018 Jun;18:1864-1868.
    PMID: 29904689 DOI: 10.1016/j.dib.2018.04.119
    The paper presents the data from the surface and subsurface mapping of this area for the purpose of siting industrial city in the area. The field data collected combine with the borehole data was to successfully apply these to solving geological, environmental and engineering complications posed by the complexity of the subsurface geological structures underlain this area. The Electrical Resistivity, (ER) and Induced Polarization, (IP) data were initially processed using RES2DINV software model to generate the depth to the lithological units together with topographic correction. The 2-D ER and IP data were collected from 23rd April 2017 up until 7th May 2017 covering a total of about 17.6 km along 44 survey lines using ABEM Terrameter SAS4000 for the field measurement. A total of 20 Borehole logs data were recorded to better characterized in-situ, the subsurface geological formations emplaced in the study area. The study area is located at Bagan Datuk, Perak Darul Ridzuan situated on Latitude 2° 44.653'N and Longitudes 104° 28.79' E along the west coast Peninsula Malaysia. The topography of the area is generally flat low-laying and elevation range from about 0 m to 32 m above mean sea level (MSL).
    Matched MeSH terms: Cities
  11. Abd Manan TSB, Khan T, Wan Mohtar WHM, Beddu S, Mohd Kamal NL, Yavari S, et al.
    Data Brief, 2020 Jun;30:105518.
    PMID: 32382595 DOI: 10.1016/j.dib.2020.105518
    Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.
    Matched MeSH terms: Cities
  12. Bukhsh A, Khan TM, Sarfraz Nawaz M, Sajjad Ahmed H, Chan KG, Goh BH
    Diabetes Metab Syndr Obes, 2019;12:1409-1417.
    PMID: 31616171 DOI: 10.2147/DMSO.S209711
    Objective: This study explored the relationship of disease knowledge with glycemic control and self-care practices in adult Pakistani people diabetes (PWD).

    Methods: People diagnosed with type 2 diabetes (n=218) were selected from three health care centers, located in different cities of Pakistan. Disease knowledge and self-care practices were assessed by Urdu versions of Diabetes Knowledge Questionnaire (DKQ) and Diabetes Self-Management Questionnaire (DSMQ), using a cross-sectional design. Chi-square and correlation analysis were applied to explore the relationship of disease knowledge with glycemic control and self-care practices. Linear regression was used to explore the predictors for disease knowledge.

    Results: Majority of the sample was >45-60 years old (48.8%), suffering from type 2 diabetes mellitus for <5 years (49.5%) and had poor glycemic control (HbA1C≥7%; n=181 participants). Disease knowledge was significantly associated (p<0.05) with patient's gender, level of education, family history of diabetes, nature of euglycemic therapy, and glycemic control. Correlation matrix showed strongly inverse correlations of DKQ with glycated hemoglobin levels (r=-0.62; p<0.001) and strongly positive with DSMQ sum scale (r=0.63; p<0.001). PWD having university-level education (β=0.22; 95% Confidence Interval (CI) 0.189, 0.872; p<0.01), doing job (β=0.22; 95% CI 0.009, 0.908]; p=0.046), and use of oral hypoglycemic agents in combination with insulin (β=-0.16; 95% CI [-1.224, -0.071]; p=0.028) were the significant predictors for disease knowledge.

    Conclusion: Disease knowledge significantly correlated with glycated hemoglobin levels and self-care activities of PWD. These findings will help in designing patient-tailored diabetes educational interventions for yielding a higher probability of achieving target glycemic control.

    Matched MeSH terms: Cities
  13. Palermo V, Hernandez Y
    Ecol Econ, 2020 Nov;177:106791.
    PMID: 33144752 DOI: 10.1016/j.ecolecon.2020.106791
    The frequency and intensity of extreme climate events are increasing all around the world, due to climate change. Climate adaptation strategies are therefore needed, since mitigation strategies alone are not sufficient to avoid serious impacts of climate change. However, adaptation to climate change is not straightforward, as it is highly influenced by diverse and conflicting interests as well as epistemological (or scientific) uncertainties. Therefore, a minimum requirement for its success is the active participation of stakeholders and citizens in the adaptation policy cycle. This paper presents a case study on a participatory process involving civil servants from different municipalities in Malaysia, in Southeast Asia, with a view to considering the optimal level of engagement that is required for climate adaptation planning. The exercise consisted of a Focus Group session, where participants were asked to discuss the level of stakeholder and citizen participation that should be adopted within the Global Covenant of Mayors for Climate and Energy initiative. Contrary to authors' expectations, the participants tended to suggest medium to high levels of participation in the planning process. During the dialogues, a walking activity through the city, aimed at identifying hotspots of climate risks and defined as "safety walks", was one of the ideas proposed as a high-potential participatory method, spreading in the adaptation framework. Safety walks could complement climate modelling and enhance the robustness of climate risk assessments.
    Matched MeSH terms: Cities
  14. Cui J, Zhang Y, Yang F, Chang Y, Du K, Chan A, et al.
    Ecotoxicol Environ Saf, 2020 Apr 15;193:110344.
    PMID: 32092583 DOI: 10.1016/j.ecoenv.2020.110344
    To identify seasonal fluxes and sources of dissolved inorganic nitrogen (DIN) wet deposition, concentrations and δ15N signatures of nitrate (NO3-) and ammonium (NH4+) in wet precipitation were measured at four typical land-use types in the Three Gorges reservoir (TGR) area of southwest China for a one-year period. Higher DIN fluxes were recorded in spring and summer and their total fluxes (averaged 7.58 kg N ha-1) were similar to the critical loads in aquatic ecosystems. Significant differences of precipitation δ15N were observed for NH4+-N between town and wetland sites in spring and between urban and rural sites in summer. For NO3--N, significant differences of precipitation δ15N were observed between town and rural sites in spring and between urban and town sites in autumn, respectively. Quantitative results of NO3--N sources showed that both biomass burning and coal combustion had higher fluxes at the urban site especially in winter (0.18 ± 0.09 and 0.19 ± 0.08 kg N ha-1), which were about three times higher than those at the town site. A similar finding was observed for soil emission and vehicle exhausts in winter. On the whole, DIN wet deposition averaged at 12.13 kg N ha-1 yr-1 with the urban site as the hotspot (17.50 kg N ha-1 yr-1) and regional NO3--N fluxes had a seasonal pattern with minimum values in winter. The contribution to NO3--N wet deposition from biomass burning was 26.1 ± 14.1%, which is the second dominant factor lower than coal combustion (26.5 ± 12.6%) in the TGR area during spring and summer. Hence N emission reduction from biomass burning, coal combustion and vehicle exhausts should be strengthened especially in spring and summer to effectively manage DIN pollution for the sustainable development in TGR area.
    Matched MeSH terms: Cities
  15. Newell B, Siri J
    Environ Int, 2016 10;95:93-7.
    PMID: 27553880 DOI: 10.1016/j.envint.2016.08.003
    Cities are complex adaptive systems whose responses to policy initiatives emerge from feedback interactions between their parts. Urban policy makers must routinely deal with both detail and dynamic complexity, coupled with high levels of diversity, uncertainty and contingency. In such circumstances, it is difficult to generate reliable predictions of health-policy outcomes. In this paper we explore the potential for low-order system dynamics (LOSD) models to make a contribution towards meeting this challenge. By definition, LOSD models have few state variables (≤5), illustrate the non-linear effects caused by feedback and accumulation, and focus on endogenous dynamics generated within well-defined boundaries. We suggest that experience with LOSD models can help practitioners to develop an understanding of basic principles of system dynamics, giving them the ability to 'see with new eyes'. Because efforts to build a set of LOSD models can help a transdisciplinary group to develop a shared, coherent view of the problems that they seek to tackle, such models can also become the foundations of 'powerful ideas'. Powerful ideas are conceptual metaphors that provide the members of a policy-making group with the a priori shared context required for effective communication, the co-production of knowledge, and the collaborative development of effective public health policies.
    Matched MeSH terms: Cities
  16. Puppim de Oliveira JA, Doll CN
    Environ Int, 2016 12;97:146-154.
    PMID: 27665118 DOI: 10.1016/j.envint.2016.08.020
    Health has been the main driver for many urban environmental interventions, particularly in cases of significant health problems linked to poor urban environmental conditions. This paper examines empirically the links between climate change mitigation and health in urban areas, when health is the main driver for improvements. The paper aims to understand how systems of urban governance can enable or prevent the creation of health outcomes via continuous improvements in the environmental conditions in a city. The research draws on cases from two Indian cities where initiatives were undertaken in different sectors: Surat (waste) and Delhi (transportation). Using the literature on network effectiveness as an analytical framework, the paper compares the cases to identify the possible ways to strengthen the governance and policy making process in the urban system so that each intervention can intentionally realize multiple impacts for both local health and climate change mitigation in the long term as well as factors that may pose a threat to long-term progress and revert back to the previous situation after initial achievements.
    Matched MeSH terms: Cities
  17. Shutes RB
    Environ Int, 2001 May;26(5-6):441-7.
    PMID: 11392764
    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.
    Matched MeSH terms: Cities
  18. Chapman R, Howden-Chapman P, Capon A
    Environ Int, 2016 Sep;94:380-387.
    PMID: 27126780 DOI: 10.1016/j.envint.2016.04.014
    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues.
    Matched MeSH terms: Cities*
  19. Praveena SM, Aris AZ
    Environ Geochem Health, 2018 Apr;40(2):749-762.
    PMID: 28929262 DOI: 10.1007/s10653-017-0021-8
    This study aims to determine the status of potentially toxic element concentrations of road dust in a medium-sized city (Rawang, Malaysia). This study adopts source identification via enrichment factor, Pearson correlation analysis, and Fourier spectral analysis to identify sources of potentially toxic element concentrations in road dust in Rawang City, Malaysia. Health risk assessment was conducted to determine potential health risks (carcinogenic and non-carcinogenic risks) among adults and children via multiple pathways (i.e., ingestion, dermal contact, and inhalation). Mean of potentially toxic element concentrations were found in the order of Pb > Zn > Cr(IV) > Cu > Ni > Cd > As > Co. Source identification revealed that Cu, Cd, Pb, Zn, Ni, and Cr(IV) are associated with anthropogenic sources in industrial and highly populated areas in northern and southern Rawang, cement factories in southern Rawang, as well as the rapid development and population growth in northwestern Rawang, which have resulted in high traffic congestion. Cobalt, Fe, and As are related to geological background and lithologies in Rawang. Pathway orders for both carcinogenic and non-carcinogenic risks are ingestion, dermal contact, and inhalation, involving adults and children. Non-carcinogenic health risks in adults were attributed to Cr(IV), Pb, and Cd, whereas Cu, Cd, Cr(IV), Pb, and Zn were found to have non-carcinogenic health risks for children. Cd, Cr(IV), Pb, and As may induce carcinogenic risks in adults and children, and the total lifetime cancer risk values exceeded incremental lifetime.
    Matched MeSH terms: Cities
  20. Shahab A, Hui Z, Rad S, Xiao H, Siddique J, Huang LL, et al.
    Environ Geochem Health, 2023 Mar;45(3):585-606.
    PMID: 35347514 DOI: 10.1007/s10653-022-01255-3
    In order to expound on the present situation and potential risk of road dust heavy metals in major cities, a total of 114 literatures mainly over the past two decades, involving more than 5000 sampling sites in 61 cities of 21 countries, were screened through the collection and analysis of research papers. The concentration, sources, distribution, health risk, sample collection, and analytical methods of heavy metal research on road dust in cities around the world are summarized. The results show that Cd, Zn, and Cu in many urban road dusts in the world are higher than the grade II of the Chinese maximum allowable concentration of potentially toxic elements in the soil. Geo-accumulation index values show that Pb > Cd > Zn > Cu had the highest contamination levels. Hazard index assessment indicates Pb and Cr had the highest potential health risk, especially for children in which ingestion was found as the main exposure pathway. Moreover, through comparative analysis, it is found that some pollutants are higher in developed and industrialized cities and transport (53%) followed by industrial emissions (35%) provide the major contributions to the sources of heavy metals.
    Matched MeSH terms: Cities
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links