Cyclodextrin-ionic liquid polymer (βCD-BIMOTs-TDI) is a new class of macroporous material and has great potential to be used as an SPE adsorbent material for extraction of phenols in river water samples. Six phenols, as model analytes, were extracted on a βCD-BIMOTs-TDI SPE cartridge, and then, eluted with 2 mL of methanol containing 1% acetic acid. The optimum experimental condition was 15 mL of sample volume (sample at pH 6) and 2 mL of methanol containing 1% acetic acid as an eluent solvent. The eluent concentration was determined by using Gas Chromatography-Flame Ionization Detector (GC-FID). Under optimized condition, high sensitivity (detection limits 0.23-0.35 µg/L) and good recoveries (87-116%) were achieved with satisfactory relative standard deviation (RSD) (0.1-1.7%). The developed βCD-BIMOTs-TDI-SPE was then compared with other adsorbents, and the obtained results showed that the βCD-BIMOTs-TDI exhibited higher extraction recovery due to the unique structure and properties. Finally, the βCD-BIMOTs-TDI was applied as a solid phase extraction sorbent for phenols determination under optimized condition, in river and tap waters, prior to the GC-FID separation.
A new home-made diffusive bag-type passive sampler called Lanwatsu was developed for benzene, toluene, ethylbenzene and xylene monitoring in roadside air. The passive samplers were outdoor validated and deployed together with two commercial passive samplers, Ultra I SKC Inc. and Radiello, for daily roadside air monitoring in East Asian cities including HoChiMinh, Hanoi, Cantho, Danang, Vungtau, Hue (Vietnam), Kuala Lumpur (Malaysia), Kyoto, Osaka (Japan), Nanjing (China) and Singapore in 2011. High daily benzene concentrations of 87, 52, 32, 23, 13, 12 and 48 µg/m³ were observed in HoChiMinh, Hanoi, Cantho, Danang, Hue, Vung Tau (Vietnam), and Kuala Lumpur (Malaysia), respectively. Kyoto and Osaka (Japan) were clean with daily benzene concentrations below 2.3 μg/m³. The daily benzene concentrations in Nanjing (China) and Singapore were 5.6 and 6.9 μg/m³, respectively. The three passive samplers were equivalent. Passive sampling by the Lanwatsu passive sampler is acceptable for daily outdoor benzene monitoring.
Biodiesel, one of the renewable energy sources has gained attention for decades as the alternative fuel due to its remarkable properties. However, there are several drawbacks from the industrial production of biodiesel such as the spike in the production cost, environmental issues related to the usage of homogeneous catalyst and profitability in long term. One of the solutions to eliminate the problem is by utilizing low cost starting material such as palm fatty acid distillate (PFAD). PFAD is a byproduct from the refining of crude palm oil and abundantly available. Esterification of PFAD to biodiesel will be much easier with the presence of heterogeneous acid catalyst. Most of acid catalyst preparation involves series of heating process using conventional method. In this study, microwave was utilized in catalyst preparation, significantly reducing the reaction time from conventional heating method. The catalyst produced was characterized using X-Ray Diffraction (XRD), Brunauer Emmet and Teller (BET), Scanning Electron Microscopy (SEM), Temperature-Programmed Desorption - Ammonia (TPD-NH3) and Fourier Transform Infrared (FTIR) while percentage yield and conversion of the PFAD were analysed by gas chromatography - flame ionization detector (GC-FID) and acid-base titration, respectively. It has been demonstrated that the percentage yield of biodiesel from the PFAD by employing sulfonated glucose acid catalyst (SGAC) reached 98.23% under the following conditions: molar ratio of methanol to PFAD of 10:1, catalyst loading of 2.5% and reaction temperature of 70oC. The microwave-assisted SGAC showed its potential to replace the SGAC produced via conventional heating method.
Toward attaining a sustainability and eco-friendly process, a green and low-cost solvent-brine (NaCl solution) is proposed, as microwave-assisted extraction (MAE) technique solvent to extract lipids from microalgae Nannochloropsis sp. The effect of NaCl concentration on the quantity and quality of the extracted lipid was assessed, while MAE parameters were optimized using response surface methodology (RSM). The content of fatty acid methyl esters (FAMEs) in the lipid was analyzed by using a gas chromatography-flame ionization detector (GC/FID). The highest lipid yield (16.1%) was obtained using 10% (w/v) brine at optimum extraction parameters of 5% (w/v) solid loading, 100 °C, and 30 min. The lipid extraction yield via optimized MAE-brine technique was thrice better than that Soxhlet extraction did and only 2% less than Bligh and Dyer (B&D) lipid extraction, which utilized harmful solvents. The proposed MAE-brine technique offered better quality lipids containing the highest amount of polyunsaturated fatty acids (PUFA) (44.5%) and omega-3 fatty acids (FAs) (43%). Hence, the MAE-brine solvent technique appears to be a promising extraction method for cheaper, greener, and faster extraction of a high-quality lipid for specialty food applications.
A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.