Displaying publications 21 - 40 of 60 in total

Abstract:
Sort:
  1. Foo FK, Othman AS, Lee CY
    J Insect Physiol, 2011 Nov;57(11):1495-500.
    PMID: 21840313 DOI: 10.1016/j.jinsphys.2011.07.019
    The majority of true parasitoids manipulate their host's physiology for their own benefit. In this study, we documented the physiological changes that occurred in major soldiers of the subterranean termite Macrotermes gilvus (Hagen) (Isoptera: Termitidae) parasitized by the koinobiont larval endoparasitoid Misotermes mindeni Disney and Neoh (Diptera: Phoridae). We compared the metabolic rate, body water content, body water loss rate, cuticular permeability, and desiccation tolerance between parasitized and unparasitized major soldiers. The metabolic rate of parasitized hosts was significantly higher than that of unparasitized termites. Mean total body water content of parasitized major soldiers (64.73±3.26%) was significantly lower than that of unparasitized termites (71.99±2.23%). Parasitized hosts also had significantly lower total body water loss rates (5.72±0.06%/h) and higher cuticular permeability (49.37±11.26 μg/cm/h/mmHg) than unparasitized major soldiers (6.75±0.16%/h and 60.76±24.98 μg/cm/h/mmHg, respectively). Parasitized major soldiers survived almost twice as long as unparasitized termites (LT(50)=6.66 h and LT(50)=3.40 h, respectively) and they had significantly higher tolerance to water loss compared to unparasitized termites (45.28±6.79% and 32.84±7.69%, respectively). Body lipid content in parasitized hosts (19.84±6.27%) was significantly higher than that of unparasitized termites (6.17±7.87%). Finally, parasitized hosts had a significantly lower percentage of cuticular water content than unparasitized major soldiers (10.97±1.84% and 13.17±2.21%, respectively). Based on these data, we conclude that the parasitism-induced physiological changes in the host are beneficial to the parasitoids as the alterations can clearly increase the parasite's chances of survival when exposed to extreme environmental conditions and ensure that the parasitoids are able to complete their larval development successfully before the host dies.
    Matched MeSH terms: Isoptera/metabolism; Isoptera/parasitology*; Isoptera/physiology
  2. Neoh KB, Lee CY
    J Insect Sci, 2011;11:47.
    PMID: 21861651 DOI: 10.1673/031.011.4701
    The larval parasitoid Verticia fasciventris Malloch (Diptera: Calliphoridae) develops in the head of soldiers of the fungus-growing termite Macrotermes carbonarius (Hagen) (Isoptera: Termitidae). Morphological and behavioral changes in the host were evaluated and the termite castes and stages that were parasitized were identified. The larval emergence process is also described and possible mechanisms for the parasitoid fly's entry into the host body are discussed based on qualitative observations. Only a single larva per host was found. The mature larva pupated outside the host's body by exiting between the abdominal cerci. Parasitized soldiers possess a short and square-shaped head capsule, a pair of notably short mandibles, and a pair of 18-segmented antennae. Although parasitized soldiers were statistically less aggressive than healthy soldiers (P < 0.05), they expressed varying levels of aggression. Both minor and major soldiers can be parasitized and based on evidence from presoldiers, parasitization may begin during the precursor stages of soldiers. However, the stage at which parasitism first occurs has not been determined.
    Matched MeSH terms: Isoptera/anatomy & histology; Isoptera/parasitology*
  3. Neoh KB, Lee CC, Lee CY
    Pest Manag Sci, 2014 Feb;70(2):240-4.
    PMID: 23554339 DOI: 10.1002/ps.3544
    Mutual interactions, including reciprocal food sharing and grooming between chlorantraniliprole- and fipronil-treated, and untreated Asian subterranean termites, Coptotermes gestroi (Wasmann), were examined using rubidium as a tracer. Two questions were addressed in this study: (1) After insecticide treatment, does the mutual interaction between termiticide-treated termites and untreated nestmates increase? (2) Does the nutritional status of both termiticide-treated termites and untreated nestmates affect the mutual interaction?
    Matched MeSH terms: Isoptera/drug effects*; Isoptera/metabolism
  4. Neoh KB, Hu J, Yeoh BH, Lee CY
    Pest Manag Sci, 2012 May;68(5):749-56.
    PMID: 22076820 DOI: 10.1002/ps.2322
    The effectiveness of chlorantraniliprole and other insecticides (bifenthrin, fipronil, indoxacarb, imidacloprid and chlorfenapyr) were tested against Coptotermes gestroi (Wasmann). Four experiments were conducted: a topical bioassay, a horizontal transfer study, an insecticide bioavailability test and a feeding bioassay.
    Matched MeSH terms: Isoptera/drug effects*
  5. Lee CC, Neoh KB, Lee CY
    J Econ Entomol, 2014 12;107(6):2154-62.
    PMID: 26470081 DOI: 10.1603/EC14193
    The efficacy of chitin synthesis inhibitors (CSIs) against fungus-growing termites is known to vary. In this study, 0.1% chlorfluazuron (CFZ) cellulose bait was tested against medium and large field colonies of Macrotermes gilvus (Hagen). The termite mounds were dissected to determine the health of the colony. Individual termites (i.e., workers and larvae) and fungus combs were subjected to gas chromatography-mass spectrometry (GC-MS) analysis to detect the presence of CFZ. In this study, 540.0 ± 25.8 g (or equivalent to 540.0 ± 25.8 mg active ingredient) and 680.0 ± 49.0 g (680.0 ± 49.0 mg active ingredient) of bait matrix were removed by the medium- and large-sized colonies, respectively, after baiting. All treated medium-sized colonies were moribund. The dead termites were scattered in the mound, larvae were absent, population size had decreased by 90%, and the queens appeared unhealthy. In contrast, no or limited effects were found in large-sized colonies. Only trace amounts of CFZ were detected in workers, larvae, and fungus combs, and the population of large-sized colonies had declined by only up to 40%. This might be owing to the presence of large amount of basidiomycete fungus and a drastic decrease of CFZ content per unit fungus comb (a main food source of larvae) in the large-sized colonies, and hence reduced the toxic effect and longer time is required to accumulate the lethal dose in larvae. Nevertheless, we do not deny the possibility of CSI bait eliminating or suppressing the higher termite if the test colonies could pick up adequate lethal dose by installing more bait stations and prolonging the baiting period.
    Matched MeSH terms: Isoptera*
  6. Neoh KB, Jalaludin NA, Lee CY
    J Econ Entomol, 2011 Apr;104(2):607-13.
    PMID: 21510212
    The efficacy of Xterm, which contains 1% bistrifluron, in the form of cellulose bait pellets was evaluated for its efficacy in eradicating field colonies of the mound-building termite Globitermes sulphureus (Haviland) (Isoptera: Termitidae). The termite mounds were dissected at the end of the experiment to determine whether the colonies were eliminated. By approximately 2 mo postbaiting, the body of termite workers appeared marble white, and mites were present on the body. The soldier-worker ratio increased drastically in the colonies, and the wall surface of the mounds started to erode. Colony elimination required at least a 4-mo baiting period. Mound dissection revealed wet carton materials (food store) that were greatly consumed and overgrown by fast-growing fungi. Decaying cadavers were scattered all over the nests. On average, 84.1 +/- 16.4 g of bait matrix (68.9 +/- 13.4%, an equivalent of 841 +/- 164 mg of bistrifluron) was consumed in each colony. Moreover, we found that a mere 143 mg of bistrifluron was sufficient to eliminate a colony of C. sulphureus.
    Matched MeSH terms: Isoptera*
  7. Wong N, Lee CY
    J Econ Entomol, 2010 Oct;103(5):1754-60.
    PMID: 21061976
    The aim of our study was to investigate the intra- and interspecific agonistic behaviors exhibited by the worker and soldier castes of the subterranean termite Microcerotermes crassus Snyder (Isoptera: Termitidae). Aggression between M. crassus colonies from different field locations and also against three termite species--Coptotermes gestroi (Wasmann), Globitermnes sulphureus Haviland, and Odontotermes sp.--were observed in the laboratory. Termite responses were tested in paired combination of castes (soldiers versus soldiers, soldiers versus workers, and workers versus workers) consisting of 10 individuals each. Significant agonistic behaviors were observed only in encounters between pairings of different termite species. M. crassus was aggressive toward individuals from different species but not toward individuals from different M. crassus colonies. Mortality of M. crassus reached 100% in most of the interspecific encounters. However, no or low mortality was recorded in the intraspecific pairings.
    Matched MeSH terms: Isoptera/classification*; Isoptera/physiology
  8. Wong N, Lee CY
    J Econ Entomol, 2010 Apr;103(2):437-42.
    PMID: 20429460
    Moisture is an important physical factor for the survival of termites. The effects of different moisture levels (0, 5, 10, 15, 20, and 25%) of a sand substrate on the behavior of laboratory groups of Microcerotermes crassus Snyder and Coptotermes gestroi (Wasmann) (Blattodea: Termitidae: Rhinotermitidae) were evaluated. Moisture content of sand affected wood consumption and influenced termite distribution across a moisture gradient for M. crassus. Changing the moisture parameters affected the location preference of C. gestroi, but the effect on wood consumption was not significant. Nonetheless, M. crassus and C. gestroi showed a similar distribution pattern of association with particular moisture levels.
    Matched MeSH terms: Isoptera/physiology*
  9. Yeap BK, Othman AS, Lee VS, Lee CY
    J Econ Entomol, 2007 Apr;100(2):467-74.
    PMID: 17461072
    The phylogenetic relationship of Coptotermes gestroi (Wasmann) and Coptotermes vastator Light (Isoptera: Rhinotermitidae) was determined using DNA sequence comparisons of mitochondrial genes. Partial sequences of the ribosomal RNA small subunit 12S, ribosomal RNA large subunit 16S, and mitochondrial COII were obtained from nine populations of C. gestroi from South East Asia (Malaysia, Singapore, Thailand, and Indonesia) and four populations of C. vastator from the Philippines and Hawaii. In addition, four populations of Coptotermes formosanus Shiraki and Globitermes sulphureus (Haviland) were used as the outgroups. Consensus sequences were obtained and aligned. C. vastator and C. gestroi are synonymous, based on high sequence homology across the 12S, 16S, and COII genes. The interspecific pairwise sequence divergence, based on Kimura 2-parameter model between C. gestroi and C. vastator, varied only up to 0.80%. Morphometric measurements of 16 characteristics revealed numerous overlaps between the examined individuals of both species. Based on the molecular phylogenetics and morphometric data, it is proposed that C. vastator is a junior synonym of C. gestroi.
    Matched MeSH terms: Isoptera/anatomy & histology; Isoptera/classification; Isoptera/genetics*
  10. Foo FK, Singham GV, Othman AS, Lee CY
    J Econ Entomol, 2011 Oct;104(5):1675-9.
    PMID: 22066198
    A survey of the infestation rate of colonies of Macrotermes gilvus (Hagen) (Termitidae: Macrotermitinae) with the koinobiont endoparasitoid Misotermes mindeni Disney & Neoh (Diptera: Phoridae) was conducted in Malaysia from September 2009 to January 2011 in the states of Kedah, Penang, Perak, Selangor, Kuala Lumpur, Johor, Terengganu, and Sarawak. Of the 1,125 M. gilvus mounds surveyed, 12.4% contained termites parasitized by M. mindeni and these mounds occurred only in the states of Penang and Perak. High frequencies of mounds containing parasitized termites were found at sites in Penang: Bayan Lepas (21.1%), Minden Campus of Universiti Sains Malaysia ([USM]; 24.5%), Teluk Bahang (28.0%), and Bukit Mertajam (35.0%); the lowest frequency (4.0%) was recorded from Gelugor. The parasitized colonies at all sites were classified as healthy, with exception of several from the Minden Campus of USM (96.4% healthy) and Ayer Itam (87.5% healthy). Most parasitized colonies (71.2%) had a low level of M. mindeni infestation. Only 16.7 and 12.1% of the infested colonies had moderate or high parasite infestation levels, respectively. The height of infected mounds was significantly higher than that of the healthy mounds, but there was no difference between the mound diameters of infested and uninfested mounds. Parasite infestation level was not significantly correlated with mound height or mound diameter. The ambient light intensity at sites with infested mounds was significantly lower than that of uninfested mounds. There was also a significant negative relationship between light intensity and degree of parasitism.
    Matched MeSH terms: Isoptera/parasitology*
  11. Lee CC, Lee CY
    J Econ Entomol, 2015 Jun;108(3):1243-50.
    PMID: 26470252 DOI: 10.1093/jee/tov112
    The optimum maintenance conditions of the fungus-growing termite, Macrotermes gilvus (Hagen) (Blattodea: Termitidae), in the laboratory were studied. Termites were kept on a matrix of moist sand and with fungus comb as food. The survival of groups of termites was measured when maintained at different population densities by changing group size and container volume. Larger groups (≥0.6 g) were more vigorous and had significant higher survival rates than smaller groups (≤0.3 g). The population density for optimal survival of M. gilvus is 0.0025 g per container volume (ml) or 0.0169 g per matrix volume (cm(3)), i.e., 1.2 g of termites kept in a 480-ml container filled with 71 cm3 of sand. In termite groups of smaller size (i.e., 0.3 g) or groups maintained in smaller container (i.e., 100 ml) the fungus comb was overgrown with Xylaria spp., and subsequently all termites died within the study period. The insufficient number of workers for regulating the growth of unwanted fungi other than Termitomyces spp. in the fungus comb is the most likely reason. Unlike some other mound-building termite species, M. gilvus showed satisfactory survival when maintained in non-nutritious matrix (i.e., sand). There was no significant difference in the survival rate between different colonies of M. gilvus (n=5), with survival in the range of 78.5-84.4% after 4 wk. Advances in the maintenance of Macrotermes will enable researchers to study with more biological relevance many aspects of the biology, behavior, and management of this species.
    Matched MeSH terms: Isoptera/physiology*
  12. Neoh KB, Lee CY
    J Econ Entomol, 2011 Apr;104(2):622-8.
    PMID: 21510214
    The caste composition and sex ratio in a mature and an incipient colony of Cryptotermes dudleyi Banks (Isoptera: Kalotermitidae) was studied. Biometric descriptors of both immature and sexual castes were developed. Morphometric analysis revealed that there are four larval instars, a pseudergate, and three nymphal instars in the development of C. dudleyi. To differentiate between the fourth larval instars and the pseudergate, pronotal width and tibial length must be taken into account, because the head width overlaps between the two groups. The number of antennal segments increases in parallel with instar development. The mature colony was headed by a pair of physogastric nymphoid neotenics; the colony also contained multiple pairs of nonphysogastric de-alates and wing-torn alates. The majority of eggs and larvae were confined to galleries that connected to locations where nymphoid neotenics were found, whereas in general only pseudergates and nymphs were found together with de-alates and wing-torn alates. In contrast, the incipient colony contained only a pair of primary reproductives. Nymphs formed a major group in both mature and incipient colonies, as did pseudergates. The sex ratio of the mature colony was slightly but significantly biased in favor of females, whereas it was skewed toward males in the incipient colony. The data also suggested that the soldier caste was female skewed.
    Matched MeSH terms: Isoptera/growth & development*
  13. Hu J, Neoh KB, Appel AG, Lee CY
    PMID: 22085890 DOI: 10.1016/j.cbpa.2011.10.028
    The foraging patterns of termites are strongly related to physiological limits in overcoming desiccation stress. In this study, we examined moisture preferences and physiological characteristics of Macrotermes carbonarius (Hagen) and M. gilvus (Hagen) as both exhibit conspicuous patterns of foraging activity. Despite both species showing no significant differences in calculated cuticular permeability, and percentage of total body water, they differed greatly in rate of water loss and surface area to volume ratio. For example, M. carbonarius which had a lower surface area to volume ratio (29.26-53.66) showed lower rate of water loss and percentage of total body water loss. This also resulted in higher LT(50) when exposed to extreme conditions (≈2% RH). However, contrasting observations were made in M. gilvus that has smaller size with higher surface area to volume ratio of 40.28-69.75. It is likely that the standard equation for calculating insect surface areas is inadequate for these termite species. The trend was further supported by the result of a moisture preference bioassay that indicated M. carbonarius had a broader range of moisture preference (between 5% and 20%) than M. gilvus which had a relatively narrow moisture preference (only 20%). These results explain why M. carbonarius can tolerate desiccation stress for a longer period foraging above-ground in the open air; while M. gilvus only forages below ground or concealed within foraging mud tubes.
    Matched MeSH terms: Isoptera/physiology*
  14. Veera Singham G, Othman AS, Lee CY
    PLoS One, 2017;12(11):e0186690.
    PMID: 29186140 DOI: 10.1371/journal.pone.0186690
    Dispersal of soil-dwelling organisms via the repeatedly exposed Sunda shelf through much of the Pleistocene in Southeast Asia has not been studied extensively, especially for invertebrates. Here we investigated the phylogeography of an endemic termite species, Macrotermes gilvus (Hagen), to elucidate the spatiotemporal dynamics of dispersal routes of terrestrial fauna in Pleistocene Southeast Asia. We sampled 213 termite colonies from 66 localities throughout the region. Independently inherited microsatellites and mtDNA markers were used to infer the phylogeographic framework of M. gilvus. Discrete phylogeographic analysis and molecular dating based on fossil calibration were used to infer the dynamics of M. gilvus dispersal in time and space across Southeast Asia. We found that the termite dispersal events were consistently dated within the Pleistocene time frame. The dispersal pattern was multidirectional, radiating eastwards and southwards out of Indochina, which was identified as the origin for dispersal events. We found no direct dispersal events between Sumatra and Borneo despite the presence of a terrestrial connection between them during the Pleistocene. Instead, central Java served as an important link allowing termite colonies to be established in Borneo and Sumatra. Our findings support the hypothesis of a north-south dispersal corridor in Southeast Asia and suggest the presence of alternative dispersal routes across Sundaland during the Pleistocene. For the first time, we also propose that a west-east dispersal through over-water rafting likely occurred across the Pleistocene South China Sea. We found at least two independent entry routes for terrestrial species to infiltrate Sumatra and Borneo at different times.
    Matched MeSH terms: Isoptera/classification*; Isoptera/genetics
  15. Law YH
    Science, 2021 Mar 26;371(6536):1302-1305.
    PMID: 33766870 DOI: 10.1126/science.371.6536.1302
    Matched MeSH terms: Isoptera/genetics; Isoptera/physiology*
  16. Tan, Chon Seng, Wee, Chien Yeong, Lau, Han Yi Kelly
    MyJurnal
    Termitomyces are delicious edible mushrooms found in Africa and South-East Asia including Malaysia. These mushrooms were found to grow symbiotically with termites around termite nests. Numerous efforts have been made worldwide to develop a cultivation method for these mushrooms. Unfortunately, none of those attempts were successful. The main obstacles encountered were the difficulty to identify and isolate pure termitomyces culture. The problem became prevalent as the culture gets contaminated by other fungi. Termitomyces can easily be identified by its mushroom fruiting body eventually but certainly not at the mycelium and hyphea stages. In this study a simple PCR-based genetic marker detection method for confirmation of termitomyces at any culture stage was developed. Using this method, four distinctive PCR assays
    were developed using specific PCR primers designed based on the DNA sequence of the termitomyces mushroom. The PCR results showed that the PCR assays using intact termitomyces
    DNA as template was not suitable for this purpose. However, PCR using BamHI and EcoRI predigested termitomyces DNA as template showed identical polymorphism pattern for both
    termitomyces mushroom DNA and termitomyces culture DNA. Thus, the method reported here can be used for the identific.
    Matched MeSH terms: Isoptera
  17. Jenkins TM, Jones SC, Lee CY, Forschler BT, Chen Z, Lopez-Martinez G, et al.
    Mol Phylogenet Evol, 2007 Mar;42(3):612-21.
    PMID: 17254806
    Coptotermes gestroi, the Asian subterranean termite (AST), is an economically important structural and agricultural pest that has become established in many areas of the world. For the first time, phylogeography was used to illuminate the origins of new found C. gestroi in the US Commonwealth of Puerto Rico; Ohio, USA; Florida, USA; and Brisbane, Australia. Phylogenetic relationships of C. gestroi collected in indigenous locations within Malaysia, Thailand, and Singapore as well as from the four areas of introduction were investigated using three genes (16S rRNA, COII, and ITS) under three optimality criteria encompassing phenetic and cladistic assumptions (maximum parsimony, maximum likelihood, and neighbor-joining). All three genes showed consistent support for a close genetic relationship between C. gestroi samples from Singapore and Ohio, whereas termite samples from Australia, Puerto Rico, and Key West, FL were more closely related to those from Malaysia. Shipping records further substantiated that Singapore and Malaysia were the likely origin of the Ohio and Australia C. gestroi, respectively. These data provide support for using phylogeography to understand the dispersal history of exotic termites. Serendipitously, we also gained insights into concerted evolution in an ITS cluster from rhinotermitid species in two genera.
    Matched MeSH terms: Isoptera/genetics*
  18. Bignell DE, Jones DT
    J Insect Sci, 2014;14:81.
    PMID: 25368037 DOI: 10.1093/jis/14.1.81
    Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y, Lo N, (Editors), Springer, Dordrecht, 576pp, ISBN 978-90-481-3976-7, e-ISBN 978-90-481-3977-4, DOI 10.1007/978-90-481-3977-4) was published in 2011. With the agreement of the publishers, we give a taxonomic index of the book comprising 494 termite entries, 103 entries of other multicellular animal species mentioned as associates or predators of termites, with 9 fungal, 60 protist, and 64 prokaryote identities, which are listed as termite symbionts (sensu stricto). In addition, we add descriptive authorities for living (and some fossil) termite genera and species. Higher taxonomic groupings for termites are indicated by 25 code numbers. Microorganisms (prokaryotes, protists, and fungi) are listed separately, using broad modern taxonomic affiliations from the contemporary literature of bacteriology, protozoology, and mycology.
    Matched MeSH terms: Isoptera/classification*; Isoptera/microbiology
  19. Harikrishnan S, Sudarshan S, Sivasubramani K, Nandini MS, Narenkumar J, Ramachandran V, et al.
    Sci Rep, 2023 Sep 13;13(1):15153.
    PMID: 37704703 DOI: 10.1038/s41598-023-42475-6
    The widespread use of synthetic pesticides has resulted in a number of issues, including a rise in insecticide-resistant organisms, environmental degradation, and a hazard to human health. As a result, new microbial derived insecticides that are safe for human health and the environment are urgently needed. In this study, rhamnolipid biosurfactants produced from Enterobacter cloacae SJ2 was used to evaluate the toxicity towards mosquito larvae (Culex quinquefasciatus) and termites (Odontotermes obesus). Results showed dose dependent mortality rate was observed between the treatments. The 48 h LC50 (median lethal concentration) values of the biosurfactant were determined for termite and mosquito larvae following the non-linear regression curve fit method. Results showed larvicidal activity and anti-termite activity of biosurfactants with 48 h LC50 value (95% confidence interval) of 26.49 mg/L (25.40 to 27.57) and 33.43 mg/L (31.09 to 35.68), respectively. According to a histopathological investigation, the biosurfactant treatment caused substantial tissue damage in cellular organelles of larvae and termites. The findings of this study suggest that the microbial biosurfactant produced by E. cloacae SJ2 is an excellent and potentially effective agent for controlling Cx. quinquefasciatus and O. obesus.
    Matched MeSH terms: Isoptera*
  20. Abdullah F, Subramanian P, Ibrahim H, Abdul Malek SN, Lee GS, Hong SL
    J Insect Sci, 2015;15(1):175.
    PMID: 25688085 DOI: 10.1093/jisesa/ieu175
    Dual choice bioassays were used to evaluate the antifeedant property of essential oil and methanolic extract of Alpinia galanga (L.) (locally known as lengkuas) against two species of termites, Coptotermes gestroi (Wasmann) and Coptotermes curvignathus (Holmgren) (Isoptera: Rhinotermitidae). A 4-cm-diameter paper disc treated with A. galanga essential oil and another treated with either methanol or hexane as control were placed in a petri dish with 10 termites. Mean consumption of paper discs (miligram) treated with 2,000 ppm of essential oil by C. gestroi was 3.30 ± 0.24 mg and by C. curvignathus was 3.32 ± 0.24 mg. A. galanga essential oil showed significant difference in antifeedant effect, 2,000 ppm of A. galanga essential oil was considered to be the optimum concentration that gave maximum antifeedant effect. The essential oil composition was determined using gas chromatography-mass spectrometry. The major component of the essential oil was 1,8-cineol (61.9%). Antifeedant bioassay using 500 ppm of 1,8-cineol showed significant reduction in paper consumption by both termite species. Thus, the bioactive agent in A. galangal essential oil causing antifeeding activity was identified as 1,8-cineol. Repellent activity shows that 250 ppm of 1,8-cineol caused 50.00 ± 4.47% repellency for C. gestroi, whereas for C. curvignathus 750 ppm of 1,8-cineol was needed to cause similar repellent activity (56.67 ± 3.33%). C. curvignathus is more susceptible compare to C. gestroi in Contact Toxicity study, the lethal dose (LD50) of C. curvignathus was 945 mg/kg, whereas LD50 value for C. gestroi was 1,102 mg/kg. Hence 1,8-cineol may be developed as an alternative control against termite in sustainable agriculture practices.
    Matched MeSH terms: Isoptera/drug effects*; Isoptera/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links